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Abstract. Haldane equation is a mathematical expression that has been widely used in growth kinetics to 
give a proper fit to experimental data in case of substrate inhibition during enzymatic processes. It 
determines the specific growth rate of a microorganism based on the substrate concentration, the half 
saturation constant, the inhibitory constant and the maximum growth rate achievable. However, for practical 
and experimental design purposes it is important to describe Haldane equation in terms of the initial 
concentration of substrate, since this information is required to know the proper amount of initial substrate 
to be used. For this reason, in the present paper we proposed to integrate the expression of yield factor and 
the definition of specific growth rate in a batch system into Haldane’s equation and to solve analytically the 
mathematical equations in order to obtain a final expression that correlates the maximum growth rate, the 
limiting nutrient concentration at which the specific growth is half its maximum value, the inhibitory 
constant, the initial concentration of substrate and the initial amount of biomass required in time. 
Accordingly, simulation and numerical studies are presented to analyze and discuss the importance of the 
obtained model. 

1 Introduction
Biochemical reactions are generally performed using 
cells or living organisms which in the presence of 
specific nutrients are able to grow and perform 
biochemical operations. Research using living cells for 
the production of new compounds, secondary 
metabolites and high value added products (i.e. 
biopharmaceuticals, antibiotics, proteins, and chemicals 
used in industry) is a recent trend in microbiology and 
biotechnology. For this purpose, different forms of 
microorganism (algae, bacteria or fungi) and cells
(human, vegetable or animal) are widely used [1].

Microorganisms are able to grow either by 
increasing the population number or the cell density after 
consuming the nutrients of the medium under optimum 
conditions of temperature, pH, turbulent regime, and 
concentration of particular elements and compounds 
found in the culture medium [2]. The modeling of this 
process requires assuming the absence of intracellular 
reactions, and considering the biomass as homogenous 
and in a steady environment. This leads to a balance 
growth state. Under these considerations, it has been 
observed that the growth velocity of microorganisms is 
proportional to the existing population, that is 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ =
µ𝑑𝑑, where µ is the specific growth rate, x is the cell 
concentration and t represents the time. The yield (YX/S)
is the ratio of product to reactant consumed [3]. It is 

important to note that the specific growth rate does not 
remains constant during the process as it generally 
depends on the concentration of nutrients [4]. The 
concentration of substrate is important because it allows 
the growth of the microorganism or to increase the 
synthesis of products. However, excessive concentration 
can be detrimental due to inhibition or poisoning effects. 
Several mathematical models have been proposed 
aiming to describe the process of growth kinetics. Some 
common models generally used were proposed by 
Monod, Haldane, Tessier, Andrews, Moser, Aiba, and 
Contois to fit the values of experimental data reported 
[5-8]. In the present paper we aim to study the Haldane 
model. This model is used to describe the inhibitory 
behavior of microorganisms or cells, which can occur at 
specific values of substrate concentration. Haldane 
model has been used to fit experimental data of several 
kinetic models, i.e. process in anaerobic reactors that 
describes sulfate reduction process considering different 
concentrations  of sulfate, biomass and sulfide [9],
phenol degradation in batch operations by means of 
description of the influence of concentration of an 
inhibition substrate on specific growth rate and the 
proposal of analytical expressions that correlates the 
biomass and substrate using homotopy perturbation 
methods [10].



2

MATEC Web of Conferences 210, 04044 (2018) https://doi.org/10.1051/matecconf/201821004044
CSCC 2018

2. Description of the model 
Haldane kinetic model is represented by equation (1)

                  𝜇𝜇 = 𝜇𝜇max𝑆𝑆

𝐾𝐾𝐾𝐾+𝑆𝑆+𝑆𝑆
2
𝐾𝐾𝐾𝐾

(1)

where µmax is the maximum growth rate, Ki is the 
inhibitory constant, S is the substrate concentration, Ks is 
the half saturation constant. As we can observe, from 
this equation we can obtain information about the rate of 
growth and the concentration of substrate that cause 
inhibition. However, from this equation there is no 
correlation to the initial substrate concentration (S0). This 
can be approached by including the biomass yield factor 
equation (2), which represents the proportion of biomass 
that has been produced to the amount of substrate 
consumed 

                  YX
S

= X-Xo
So-S

(2)

where YX/S represents the yield, and X0 and X are the 
initial and final concentration of biomass respectively.
From equation (2) we can obtain (3). Then, substitution 
of (3) into (1) leads to (4), which can be also represented 
as in expression (5) after solving the square of the 
trinomial. 
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After simplification of the denominator, it follows that:
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where b = (𝐾𝐾𝐾𝐾YX
S

2𝐾𝐾𝐾𝐾 + 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾YX
S

2 + KiXo𝑌𝑌𝑋𝑋
𝑆𝑆

+ So2YX
S

2 + 𝑋𝑋𝐾𝐾2 +

2𝐾𝐾𝐾𝐾𝑌𝑌𝑋𝑋
𝑆𝑆
𝑋𝑋𝐾𝐾 − 𝐾𝐾𝐾𝐾𝑋𝑋𝑌𝑌𝑋𝑋

𝑆𝑆
− 2So𝑌𝑌𝑋𝑋

𝑆𝑆
X-2XXo + X2).

                              µ =
µmax(SoYX

S
+Xo-X)YX

S

2Ki

b∗YX
S

  (7) 

                          µ =
µmax(SoYX

S
+Xo-X)YX

S
Ki

c
(8)

where c= KsYX
S

2Ki + KiSoYX
S

2 + KiXoYX
S

+ So2YX
S

2 + Xo2 +

2SoYX
S
Xo + X(X − KiYX

S
− 2SoYX

S
-2Xo)

We can substitute the value of μ in the definition of 
growth velocity to have equation (9)
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Then, it follows that
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and after performing integration in the limits (X) and 
(Xo) we observe that we can separate the terms in the 
second integral 
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Inserting the result of the integrals, we finally obtain 
(15)
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Expression (15) is useful to understand the direct 
correlation of several parameters, namely the maximum 
growth rate (μmax), the limiting nutrient concentration at 
which the specific growth is half its maximum value 
(Ks), the inhibitory constant (Ki), the yield factor (YX/S) at 
particular values of biomass (X), the initial concentration 
of substrate (S0) and the initial amount of biomass 
required (X0) in time (t)

3. Numerical simulation 
For the purpose of performing numerical simulation, we 
take into consideration values of inhibition 
constant=214.5 mg/L, inhibition by substrate=18.3 
mg/L, Yield of biomass per substrate=0.63. We studied 
an initial concentration of substrate and biomass in the 
range between 0 mg/L and 2 mg/L as described in Figure 
1.  Numerical simulation was performed using Matlab 
software. We can observe that for this particular 
numerical case, the maximum growth rate is obtained at 
lower values of initial substrate concentration.  
Accordingly, the equation can be further used to analyze 
the effect of time in the maximum growth rate achieved.    

Fig. 1. Numerical simulation. Influence of initial substrate 
concentration and biomass on maximum growth rate

4. Conclusion 
The use of mathematical models in chemical process and 
biochemical engineering is important because it helps in 
the understanding of the system. When a reactor is used, 
we can obtain information about the variation of 
substrate and product concentration in time and also the 
requirements of substrate in the feed to change 
parameters of composition of desired components. 
Accurate and deep understanding of these parameters 
can guide to adjust the process, to improve the system by 
means of prediction and to propose an operation range.

This work was supported by the Ministry of Education, Youth 
and Sports of the Czech Republic within the National 
Sustainability Programme project No. LO1303 (MSMT-
7778/2014) and the European Regional Development Fund 
under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089 
and also by Lac Hong University in Vietnam.

References
1. K.V. Ramana, J.R. Xavier, and R.K. Sharma, 

Pharm. Biotechnol. Curr. Res. 1, 1-10 (2017)
2. F. Garcia-Ochoa and E. Gomez, Biotechnol. Adv. 

27, 153-176 (2009)
3. N.S. Panikov, Microbial Growth Kinetics, Springer, 

Netherlands, pp. 378, (1995)
4. K. Kovárová-Kovar and T. Egli, Microbiol. Mol. 

Biol. Rev. 62, 646-666 (1998)
5. J.E. Bailey and D.F. Ollis, Biochemical Engineering 

Fundamentals, Tata McGraw-Hill, New Delhi, 
(2010)

6. Y. Tan, Z.-X. Wang, and K.C. Marshall, Biotechnol. 
Bioeng. 52, 602-608 (2000)

7. M.S.M. Annuar, I.K.P. Tan, S. Ibrahim, and K.B. 
Ramachandran, Brazilian J. Chem. Eng. 25, 217-228 
(2008)

8. A.K. Jana, Chemical Process Modelling and 
Computer Simulation, PHI Learning, New Delhi, pp 
90-116, (2011)



4

MATEC Web of Conferences 210, 04044 (2018) https://doi.org/10.1051/matecconf/201821004044
CSCC 2018

9. F.A. Cuevas-Ortiz, M.I. Neria-González, and R.
Aguilar-López, Rev. Mex. Ing. Química 14, 137-
147 (2015)

10. R. Sathya, M. Rasi, and L. Rajendran, Kinet. Catal. 
56, 141-146 (2015)


