Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences

Journal homepage: http://www.science-gate.com/IJAAS.html

Application of grey system theory and ARIMA model to forecast factors of tourism: A case of Binh Thuan Province in Vietnam

CrossMark

Nhu-Ty Nguyen¹, Bao-Phuong-Uyen Nguyen¹, Thanh-Tuyen Tran², * Which university?

¹School of Business, International University – Vietnam National University, HCM City, Quarter 6, Linh Trung Ward, Thu Duc

District, HCMC, Vietnam

²Scientific Research Center, Lac Hong University, No.10 Huynh Van Nghe Street, Dong Nai Provinec, Vietnam

ARTICLE INFO

Article history: Received xxx Received in revised form xxx Accepted xxx Keywords: Tourism

Forecasting Vietnam Grey models ARIMA

ABSTRACT

Tourism is more and more popular, and this industry continues to develop strongly around the world. Thus, forecasting tourism demand plays an important role in development. In this study, the purpose is to provide some appropriate models for predicting the demand of tourism in Binh Thuan Province in Vietnam. There are five models applied in this study, namely GM (1, 1), DGM (1, 1), DGM (2, 1), Verhulst and ARIMA; the authors try to test these models to find which concise and accurate forecasting models being able to predict the best result about the tourism demand. So as to ensure the precision, the authors collected data of total revenue, domestic visitor, international tourists and top six countries having the biggest numbers of visitors (Russia, Germany, France, Korea, China and USA) in ten years (between 2008 to 2017) from Binh Thuan Department of Culture, Sports and Tourism. We apply MAPE, MSE, RMSE and MAD to compare the forecasting models results. As a result, GM (1, 1), DGM (1, 1), Verhulst and ARIMA augment excellent results and minimum forecasted errors. In terms of total revenue, ARIMA is the best choice for prediction. About the domestic visitors and international tourists, GM (1, 1), DGM (1, 1) and Verhust give the better calculation than the other models. Besides, the performance of GM (1, 1), DGM (1, 1), Verhulst and ARIMA to forecast the number of visitors of top six markets (Russia, Germany, France, Korea, China and USA) sending the largest number of tourists describes good results. For all the factors, DGM (2, 1) is rejected to predict due to the poor results. Moreover, recently, tourism industry has developed rapidly in Binh Thuan. Hence, the government has to propose suitable policies to develop local tourism industry.

© 2019 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since the late 1980s, thanks to the policy of reform and opening up of the state, tourism in Vietnam in general and Binh Thuan in particular has developed strongly and gained much success. Located in the South Central and Southern tourism area, Binh Thuan province owns strength in tourism potential. In recent years, the number of tourists traveling to Binh Thuan has increased rapidly, so that this "industry without chimney" more and more

According to the annual report of BINH THUAN DEPARTMENT OF CULTURE, SPORTS AND TOURISM, in the first six months of 2017, Binh Thuan province received about 2,300,000 travelers, reaching 45.87% of the plan, up 9.6% over the same period in 2016. Meanwhile, international arrivals reached about 295,000 people, up 17% over the same period in 2016; for example, The Korean market rocketed to 57.3%, China climbed to 27.8%, Russia increased by 18%, Thailand went up 4.1%, etc. On the other hand, there were some markets having a downward trend significantly; for instance, Australia declined 17.5%, USA fell down 15%, Germany reduced 11.5%; France dropped about 5%, etc. in the first six months in 2017. Additionally, both the number of domestic visitors and foreign sightseers has a growth yearly between 2008 and 2017 (described as Figs. 1 and 2). During, the total revenue from Binh Thuan tourism reached 10,812 billion VND, up approximately 20% in 2017 (Fig. 3). Binh Thuan had stably maintained a constant innovation and improvement for province's tourism over a ten-year period (2008-2017) which has the increasing figures of tourism indicators. Furthermore, the top six countries having most outstanding visitors to Vietnam are indicated in Fig. 4. It can be seen that Russia is always the first top nation providing travelers to Binh Thuan province; but this proportion was equaled in 2016 and overtaken in 2017 by Chinese market; the others following are Germany, Korea, France and USA respectively.

Fig. 2: Domestic visitor arrivals to Vietnam by year

Fig. 4: The top 6 countries providing most travelers to Binh Thuan

Binh Thuan province has to give policies to promote tourism in the most absolute way to attract tourists and occupy a position on the map Vietnamese tourism in particular and the world in general. In ord **Reference for this** Binh Thuan citation? demand in the future. Tourism experts acknowledge that improvement and accuracy of forecasting tourism are very necessary to research (Hawkins et al., 1980). Hence, the models of GM (1, 1), DGM (1, 1), DGM (2, 1), Verhulst model are demonstrated to find which models forecast exactly the situation.

In some journals, for instance, Song and Li (2008) stated that tourism demand forecasting scientists Reference for this m governments or other citation? a study of two Vietnamese researchers, Nguyen and Tran (2014) have to collect data from the Vietnamese Ministry of Tourism. It can be seen that conducting the research is compulsory to have all necessary figures, such as numbers of domestic visitors or also foreign arrivals in a nation and location, also tourist expenditure. In this study, the writer collected data from Binh Thuan Department Culture, Sports and Tourism.

Researchers apply different methods to analyze the forecasting tourism demand; there are some usual models, namely time-series model (such as **Reference for this** citation? etc. Also the combination methods are considered. According to Nguyen (2014), the correct approaches

Reference for this citation?

Reference for this

guyen (2014), the correct approaches on determinants and separates into or annual demand.

forecasting supports the nation to catch the number of domestic visitors, also international arrivals, total revenue tourism: thus, that is the data which help to Reference for this citation?

being applied to the forecasting

citation? vious papers, Time-series models namely AKIMA and GARCH (Alleyne, 2006; Gil-Alana

et al., 2004; Les et al., 2009; Lim and McAleer, 2002) and et Reference for this from correction model (ECM) cit Reference for this ive (VAR) models (Song and citation? 2007) have been popular models using tourism demand forecasting techniques. Beside Reference for this 0 used utbound Taiwanese tourist; citation? ig, Japan and the USA. Furthermore, Lin and Lee (2013) indicated econometric models adopting Multivariate Adaptive Regression Splines (MARS), Artificial Neural Network (ANN) and Support Vector Reference for this brecast monthly total arrivals citation?

Ya-Ling and Huang (2011) did the research to find out the appropriate model improving ability the forecast the demand for health tourism in Asian nations using a GM (1, 1). Nhu Ty Nguyen used Grey System Theory to test the concise models being able to predict the number of visitors in Vietnam. Otherwise APIMA illustrated better forecasting performa Reference for this demand citation? better stational tourism nations to the Seychelles (Johann and Stephen, 2003).

The researchers have to apply the most appropriate model to obtain the best forecasting achievement because forecasting is one of important factors affecting directly policy and decision-making in the future. In this study, the authors put models GM (1, 1), Verhulst, DGM (1, 1), DGM (2, 1) and ARIMA into practice. The goal of using these models is to check which models supervise the best appropriate forecasting the situation of Binh Thuan province's tourism demand.

2. Data collection and description

The research analyzes four determinants to do the forecasting – total number of domestic visitors, international arrivals, total revenue and six countries providing the most tourists to travel to Binh Thuan (Russia, China, Germany, Korea, France and USA).

We collect data between 2008 and 2017 that are gotten from Binh Thuan Department Culture, Sports and Tourism and Statistics Office of Binh Thuan.

The data composes of Total Revenue Index, Domestic Arrivals, International Tourists and Top Six Countries giving Visitors, etc. (as described in Figs. 1, 2, 3 and 4).

In terms of the number of arrivals, we also obtain 4 variables datasets. They consist of reference sources for decision, purposes of visiting, forms of trip and means of transportation. In the context of Binh Thuan, the group reference sources for decision (described in Fig. 5) answers the question "why visitors decide to arrive in Binh Thuan province", they are recommended by others who have ever gone to Binh Thuan. About the purposes of visiting (described in Fig. 6), this group wonders the freetime, economic and social conditions, etc. Moreover, visitors also consider forms of trip (described in Fig. 7) which make them save much more money for their tours. In addition, the variablemeans of transportation indicates that tourists choose the transportation which is the most convenient choice for them.

Fig. 5: Reference sources for decision

numbers of visitors arriving to Binh Thuan. The mean of total revenue index, the number of domestic arrivals and the number of international visitors are 227.74, 3.007E6 and 366380, respectively. The top six countries include Russia, Germany, France, Korea, China and USA which are presented 104629.5, 31443.5, 15377.5, 25375.1, 50352.8 and 15166.3, respectively. It can be seen that Russia is the biggest market giving tourists to Binh Thuan.

Table 1: Descriptive statistics

	Mean	Minimum	Maximum	Std. Deviation (n-1)	Variance (n-1)
Total Revenue	227.74	61.15	464.24	135.81	1.844E10
Domestic Visitors	3.007E6	1.806E6	4.542E6	9.02E5	8.137E11
International Visitors	366380	195156	590636	130265.93	1.697E10
Russia	104629.5	29760	152855	40144.28	1.612E9
Germany	31443.5	26743	34846	2591.27	6.715E6
France	15377.5	13012	17835	1615.88	2.611E6
Korea	25375.1	12466	66506	17138.65	2.937E8
China	50352.8	4453	154274	51785.29	2.682E9
USA	15166.3	13230	18215	1663.51	2.767E6

Note: Total Revenue by Million USD

3. Data analysis and result

The exact information and data sets influence significantly the accuracy of the forecasting process. In this paper, the data were collected from Binh Thuan Department Culture, Sports and Tourism and Statistics Office of Binh Thuanover a period of ten years (2008-2017) and absolutely, these data sets were never revised. It is easy to see that the tourism demand in Binh Thuan had an upward trend during the surveyed years.

In this portion, we use the data gathered from 2008 to 2017 to apply GM (1, 1), DGM (1, 1), DGM (2, 1), Verhulst and ARIMA to test the accuracy level of forecastingthedemand of tourism in Binh Thuan:

• GM (1, 1):

- ✓ a=-0.1925; (1 b=81611824.1276and $e^{a}\left(x^{(0)}(1) - \frac{b}{a}\right) = 84943934.5560$ are calculated the Total Revenue.
- ✓ The results of parameters connecting to the a=-0.0983; Domestic Visitors are b=1775695.8471so $(1 - e^a)(x^{(0)}(1) - \frac{b}{a}) =$ 1860228.9725
- ✓ a=-0.1163; b=195467.1875and (1 $e^{a}\left(x^{(0)}(1) - \frac{b}{a}\right) = 205954.3320$ are transmitted to the calculation of the International Visitors.
- ✓ a=-0.0732: b=78101.4692and $(1 e^a)(x^{(0)}(1) e^a)(x^{(0)}(1))$ $\left(\frac{b}{a}\right) = 77412.2129$ are analyzed the calculation of
- Russian visitors. ✓ The results of parameters analyzing German visitors are a=-0.0050; b=31120.9859so(1 $e^{a}\left(x^{(0)}(1) - \frac{b}{a}\right) = 31176.5122$
- ✓ a=-0.0132; b=14048.0298and $(1 e^a)(x^{(0)}(1) e^a)(x^{(0)}(1))$ $\left(\frac{b}{a}\right) = 14183.2281$ are calculated French visitors.
- ✓ a=-0.2606; b=1277.9339and $(1 e^a)(x^{(0)}(1) e^a)(x^{(0)}(1))$

 $\left(\frac{b}{a}\right) = 4645.7411$ are analyzed the calculation of Korean visitors.

✓ a=-0.3625; b=6317.4331and $(1 - e^a)(x^{(0)}(1) - e^a)(x^{(0)}(1))$ $\left(\frac{b}{a}\right) = 6653.0704$ are related to the calculation of

Chinese tourists.

✓ The results of parameters analyzing USA visitors a=-0.0131; b=13913.9127and (1 are $e^{a}\left(x^{(0)}(1)-\frac{b}{a}\right)=14040.1869$

• DGM (1, 1) and DGM (2, 1):

- ✓ Total Revenue's calculator is: $\beta_1 = 1.2127$; $\beta_2 = 90475443.0508$ and $x^{(0)}(1)(\beta_1 1) + \beta_2 =$ 103482866.9976
- ✓ Calculation of Domestic Visitors: $\beta_1 = 1.1033$; $\beta_2 = 1867795.7312,$ SO the equation $x^{(0)}(1)(\beta_1 - 1) + \beta_2 = 2054349.8646$
- ✓ Calculation of International Visitors: $\beta_1 = 1.1234$; $\beta_2 = 207602.7531$, so the equation $x^{(0)}(1)(\beta_1 - \beta_2)$ 1) + $\beta_2 = 231688.4552$
- \checkmark With the same section, Russian visitors is calculated: $\beta_1 = 1.0736$; $\beta_2 = 82069.6932$, so the equation $x^{(0)}(1)(\beta_1 - 1) + \beta_2 = 84259.3222$
- ✓ We analyzed the factor-German visitors: $\beta_1 =$ 1.0047; $\beta_2 = 31241.5299$, so the equation $x^{(0)}(1)(\beta_1 - 1) + \beta_2 = 31367.6837$
- ✓ French visitors factor's calculator is: $\beta_1 = 1.0127$; $\beta_2 = 14185.9725$ and $x^{(0)}(1)(\beta_1 - 1) + \beta_2 =$ 14406.7166
- \checkmark Calculation of Korean visitors is with the following parameters: $\beta_1 = 1.2955$; $\beta_2 =$ 1807.2379, so the equation $x^{(0)}(1)(\beta_1 - 1) +$ $\beta_2 = 1807.2379$
- ✓ Similarly, we calculate Chinese Visitors: $\beta_1 =$ 1.4407; $\beta_2 = 7937.3837$, so the equation $x^{(0)}(1)(\beta_1 - 1) + \beta_2 = 9899.6954$

✓ Lastly, USA visitors factor's calculator: $\beta_1 =$ 1.0124; $\beta_2 = 14059.8029$ and $x^{(0)}(1)(\beta_1 - 1) +$ $\beta_2 = 14267.5227$

• Verhulst:

✓ Verhuslt's calculator of Total Revenues: a=-0.2656; b=0and

$$ax^{-}$$

 $\hat{x}(k+1) = \frac{ax^{(1)}(0)}{bx^{(1)}(0) + (a - bx^{(1)}(0))e^{ak}}$ mentioned in section 2) in which $ax^{(1)}(0) =$ -16238333.8319; $a - bx^{(1)}(0) = -0.2506$; and $bx^{(1)}(0) = -0.0150$

(Ver. 7 –

- ✓ Verhuslt's calculator of Domestic Visitors: a=-0.0961; b=0and equ. Ver. 7 with $ax^{(1)}(0) =$ $-173540.4603;a - bx^{(1)}(0) =$ -0.0990; and $bx^{(1)}(0) = 0.0029$
- International Visitors-factor's calculation: a=0.0927; b=0; and equ. Ver. 7 with $ax^{(1)}(0) =$ $a - bx^{(1)}(0) =$ 18098.4270; -0.0147; $bx^{(1)}(0) = 0.1074$
- Russian visitors: a=-0.6932; b=0and $\hat{x}(k + 1) =$ $ax^{(1)}(0)$ (Ver. 7 - mentioned in $bx^{(1)}(0) + (a - bx^{(1)}(0))e^{ak}$ section 2) in with $ax^{(1)}(0) = -20630.4220$; a $bx^{(1)}(0) = -0.5462$; and $bx^{(1)}(0) = -0.1470$
- ✓ German visitors: a= -0.4705; b=0; and equ. Ver. 7 with $ax^{(1)}(0) = -12581.4170; a - bx^{(1)}(0) = -$ 0.0849; and $bx^{(1)}(0) = -0.3856$
- French visitors: a= -0.4705; b=0; and equ. Ver. 7 \checkmark with $ax^{(1)}(0) = -12581.4170$; $a - bx^{(1)}(0) = -$ 0.0849; and $bx^{(1)}(0) = -0.3856$
- ✓ Korean visitors-factor's calculation: a=0.0285; b=0; and equ. Ver. 7 with $ax^{(1)}(0) = 437.1976$; $a - bx^{(1)}(0) = -0.1098$; and $bx^{(1)}(0) = 0.1382$
- ✓ Verhulst' calculator of Chinese visitors: a= -0.5224; b=0; and equ. Ver. 7 with $ax^{(1)}(0) =$ -2326.0560; a $-bx^{(1)}(0)=$ -0.5143;and $bx^{(1)}(0) = -0.0080$
- ✓ Finally, USA visitors: a=0.1239; b=0; and equ. Ver. $ax^{(1)}(0) = 2067.3654; a - bx^{(1)}(0) =$ 7 with 0.0164; and $bx^{(1)}(0) = 0.1075$

• ARIMA

- ✓ The model parameters of Total Revenue: p=0; d=1; q=1; P=0; D=0; Q=0 and s=0 with the confidence intervals being 95% and the below charts are illustrated:
- ✓ The model parameters of Domestic Tourists: p=0; d=1; q=1; P=0; D=0; Q=0 and s=0 with the confidence intervals being 95% and the below charts are illustrated:
- ✓ The model parameters of International Arrivals: p=0; d=1; q=1; P=0; D=0; Q=0 and s=0 with the confidence intervals being 95% and the below charts are illustrated:
- \checkmark The model parameters of Russian Visitors: p=0; d=1; q=1; P=0; D=0; Q=0 and s=0 with the confidence intervals being 95% and the below charts are illustrated:

- \checkmark The model parameters of German Visitors: p=0; d=1; q=1; P=0; D=0; Q=0 and s=0 with the confidence intervals being 95% and the below charts are illustrated:
- ✓ The parameters of French Visitors: p=0; d=1; q=1; P=0; D=0; Q=0 and s=0 with the confidence intervals being 95% and the below charts are illustrated:
- \checkmark The parameters of Korean Visitors: p=0; d=1;

intervals being 95% and the below charts are illustrated:

- \checkmark The parameters of Chinese Visitors: p=0; d=1; q=1; P=0; D=0; Q=0 and s=0 with the confidence intervals being 95% and the below charts are illustrated:
- The parameters of USA Visitors: p=0; d=1; q=1; \checkmark P=0; D=0; Q=0 and s=0 with the confidence intervals being 95% and the below charts are

2012

2013

Revenue(\$)

Partial autocorrelogramActual

Lag

2014

2015 2016

017

10

8

Residuals

3000000 25000000

20000000

15000000

10000000

5000000

-5000000

-10000000 -15000000

-20000000

-25000000

1

0.8

0.6 0.4

0.2

0 0

-0.2

-0.4

-0.6

-0.8

-1

1

0

2008

q=1; P=0; D=0; Q=0 and s Provide the following figures proper numbering, caption and address them in the text???

Nguyen et al/International Journal of Advanced and Applied Sciences, 6(x) 2019, Pages: x-x

			Total Reve	inde (by Filmon obl			
STAGES	Models	Actual	GM(1,1)	DGM(1,1)	DGM(2,1)	Verhulst	ARIMA
	2008	61145942	61145942	61145942	61145942	61145942	61145942
	2009	81187204	102972419	103482867	72520576	78397414	101039711
7	2010	109016100	124827266	125496520	97252960	100039290	113733369
NOD	2011	145529624	151320581	152193082	125252969	126900244	151030240
ELE	2012	187714897	183436832	184568737	156952318	159800068	187178369
BUIL	2013	235061354	222369431	223831585	192839761	199448690	234066886
DIN	2014	276992396	269565077	271446721	233468626	246307941	281671919
۲	2015	328138939	326777518	329190907	279465346	300429838	319173617
	2016	388394155	396132716	399218869	331539118	361304028	381478114
	2017	464240011	480207848	484143705	390492837	427763999	440153522
Ŧ	2018		582127071	587134390	532796107	569737920	484093298
ORE	2019		705677610	712034027	618339749	640476955	
CAS	2020		855450492	863503253	715185352	707867979	
TIN	2021		1.037E+09	1.047E+09	824826124	769990599	
ភ	2022		1.257E+09	1.27E+09	948952553	825543021	

						10.1.	1 . 1 .	1	1				
		Table 3:	The true	values and	d forecasti	lit is no	ot addre	essed	rs and ii	nternation	al Tourist	S	
				Domestic	c Tourists	in text				Internation	al Tourists		
STAG ES	Mode Is	Actual	GM(1, 1)	DGM(1, 1)	DGM(2,	Verhul	ARIMA	Actua	GM(1,	DGM(1, 1)	DGM(2, 1)	Verhul st	ARIM A
10	15	18055	18055	180553	180553	18055	18055	1951	19515	-J	1)	19515	1951
	2008	35	35	5	5	35	35	56	6	195156	195156	6	56
		19784	20523	205435	189596	19936	21078	2216	23135			22033	2364
	2009	63	23	0	5	99	44	43	2	231688	207545	3	43
	2010	22498	22642	226661	208894	22021	22932	2503	25988	260202	224140	24871	2571
	2010	81	53	2	9	67	74	21	2	260283	234140	2	42
7	2011	25023	24980	250080	230149	24332	25567	3000	29193	202406	262688	28068	2908
MOL	2011	38	69	7	7	83	70	60	0	292400	203000	7	64
DE	2012	28000	27560	275919	253559	26896	28102	3401	32793	220405	206515	31669	3509
ГВ	2012	08	28	9	0	96	51	81	0	320493	290313	8	48
III	2013	31447	30406	304428	279341	29744	31038	3800	36837	369037	332986	35723	3773
ED.	2013	85	26	9	3	07	22	52	0	309037	332900	5	19
INC	2014	33540	33546	335883	307737	32908	34438	4118	41379	414582	373506	40284	4266
L)	2014	29	12	5	1	28	50	97	7	414502	373300	0	46
	2015	37013	37010	370588	339011	36428	36652	4531	46482	465749	418523	45411	4460
	2015	75	21	2	5	44	24	05	5	403747	410525	5	73
	2016	39940	40832	408878	373456	40348	40008	5207	52214	E00001	160520	51172	5028
	2010	84	03	6	1	98	86	54	7	323231	400330	4	88
	2017	45415	45048	451125	411392	44720	42975	5906	58653	E07007	524104	57639	5783
	2017	82	49	4	3	93	79	36	7	30/00/	524104	6	10
	2018		49700	497737	499191	55063	45189		65886	660352	654425	73020	5994
	2010		36	2	5	35	51		7	000332	034423	9	89

Nguyen et al/International Journal of Advanced and Applied Sciences, 6(x) 2019, Pages: x-x

2010	54832	549165	549873	61180	74011	7/1051	720625	82117	
2019	60	1	5	97	7	/41031	/30023	5	
2020	60494	605906	605693	68048	83138	022400	015202	92285	
2020	82	8	2	42	7	033409	015205	6	
2021	66741	668511	667171	75774	93391	026266	000220	10363	
2021	74	2	3	50	2	930200	909339	55	
2022	73633	737584	734881	84488	10490	105181	101383	11628	
2022	73	1	4	03	80	8	6	46	

Table 4: The restricts old is not addressed

				Ru	ssia	in text!!			Germany				
STAGE	Mode	Actual	GM(1,	DGM(1,	DGM(2,	Verhul	ARIM	Actu	GM(I,	DGM(1,	DGM(2,	Verhul	ARIM
S	ls	Actual	1)	1)	1)	st	А	al	1)	1)	1)	st	А
	2008	29760	29760	29760	29760	29760	29760	2674 3	26743	26743	26743	26743	2674 3
	2009	50982	83290	84259	39225	49110	42353	3168 9	31332	31368	23170	28686	2847 6
	2010	78638	89614	90459	57141	72764	63781	3004 8	31489	31516	8322	30049	2986 1
MO	2011	98060	96418	97114	73627	95844	91588	3351 7	31646	31664	Error	30969	3072 9
DEL B	2012	12491 4	10373 9	104260	88799	11390 7	11080 7	3041 2	31804	31814	Error	31572	3138 9
UILD	2013	13165 0	11161 6	111931	102760	12575 7	13784 6	2937 8	31963	31964	Error	31961	3148 7
ING	2014	15285 5	12009 1	120166	115608	13265 6	14409 0	3484 6	32123	32115	Error	32209	3193 8
	2015	11608 6	12920 9	129008	127431	13639 8	16565 7	3411 9	32283	32266	Error	32366	3265 7
	2016	12071 1	13901 9	138499	138310	13834 8	12747 4	3379 7	32445	32418	Error	32464	3319 0
	2017	14263 9	14957 5	148690	148322	13934 5	13313 7	2988 6	32607	32571	Error	32526	3343 5
	2018		16093 2	159630	166014	14010 2	14286 9		32770	32725	Error	32590	3308 0
FOR	2019		17315 1	171375	173815	14022 8			32933	32879	Error	32605	
ECAS	2020		18629 8	183984	180995	14029 2			33098	33034	Error	32614	
ring	2021		20044 3	197521	187602	14032 4			33263	33190	Error	32620	
	2022		21566 3	212054	193682	14034 0			33429	33347	Error	32624	

Table 5: The results of

Table 3. The results of in text!													
				Fr	ance					Кс	orea		
STAG	Mode	Actu	GM(1,	DGM(1,	DCM(2.1)	Verhul	ARIM	Actu	GM(1,	DGM(1,	DGM(2,	Verhul	ARIM
ES	ls	al	1)	1)	DGM(2,1)	st	А	al	1)	1)	1)	st	А
	2008	1732 3	17323	17323	17323	17323	1732 3	1534 9	15349	15349	15349	15349	1534 9
	2009	1301 2	14372	14407	18326	16859	1608 7	1246 6	6029	6344	15683	17272	2004 1
	2010	1402 1	14564	14590	22013	16421	1500 3	1252 2	7823	8218	16601	19828	1433 5
MOI	2011	1455 3	14758	14776	30677	16005	1482 0	1413 3	10151	10647	18054	23388	1764 7
DEL B	2012	1605 7	14954	14965	51035	15611	1495 2	1833 6	13173	13794	20354	28689	1815 9
UILD	2013	1520 2	15153	15155	98870	15237	1511 5	2082 7	17094	17870	23993	37415	2489 6
ING	2014	1783 5	15355	15348	211267	14880	1535 8	2137 7	22182	23152	29752	54454	2436 4
	2015	1703 7	15560	15544	475366	14541	1567 4	2995 0	28785	29994	38867	10247 2	2570 8
	2016	1473 7	15767	15742	1095916	14218	1573 9	4228 5	37353	38859	53292	11051 21	3949 8
	2017	1399 8	15977	15943	2554016	13909	1563 1	6650 6	48471	50343	76121	Error	5079 0
_	2018		16190	16146	1403033 6	13333	1546 8		62898	65222	169427	Error	7789 0
FORE	2019		16406	16351	3294590 0	13063			81620	84498	259916	Error	
CASTI	2020		16624	16560	7739161 7	12804			10591 5	109470	403124	Error	
ING	2021		16846	16771	1818252 92	12556			13744 1	141824	629765	Error	
	2022		17070	16985	4272120	12318			17835	183738	988447	Error	

Nauven et al/International la	ournal of Advanced	and Annlied Sciences	6(x) 2019 Pages: x-x
nguyen et un memutionul st	anna oj Auvanceu	unu Applieu Sciences,	0(x) 2013, 1 uyes. x-x

	95 It is not addressed 1												
	Table 6: The recent section of the s												
China USA													
STAG ES	Mode ls	Actual	GM(1,1)	DGM(1, 1)	DGM(2, 1)	Verhul st	ARIM A	Actu al	GM(1, 1)	DGM(1, 1)	DGM(2,1)	Verhul st	ARIM A
	2008	4453	4453	4453	4453	4453	4453	1668 8	16688	16688	16688	16688	1668 8
	2009	6547	9560	9900	5915	7429	19874	1356 5	14225	14268	17313	16402	1632 5
	2010	10846	13736	14262	9441	12310	17732	1493 5	14412	14445	19497	16090	1333 4
MOI	2011	13203	19737	20547	14078	20168	24485	1359 3	14602	14625	24290	15750	1450 1
DEL B	2012	27657	28361	29602	20179	32455	24914	1449 2	14794	14807	34813	15383	1327 6
UILD	2013	45074	40751	42646	28204	50821	45510	1440 4	14989	14991	57910	14988	1407 6
ING	2014	42013	58556	61439	38761	76495	61532	1697 0	15187	15178	108611	14564	1402 9
	2015	78750	84138	88514	52648	10922 2	50092	1821 5	15387	15367	219904	14112	1647 3
	2016	12071 1	12089 8	127520	70916	14636 4	10798 4	1557 1	15589	15558	464204	13634	1777 4
	2017	15427 4	17371 8	183714	94947	18334 4	14294 9	1323 0	15794	15752	1000468	13130	1531 4
	2018		24961 4	264672	168142	24084 3	15924 7		16002	15948	4761589	12055	1332 7
FOR	2019		35867 0	381305	222844	25876 3			16213	16146	1043366 2	11490	
ECAS	2020		51537 2	549335	294802	27071 0			16427	16347	2288443 4	10911	
TING	2021		74053 6	791412	389459	27833 2			16643	16551	5021513 7	10322	
	2022		10640 73	114016 5	513977	28305 9			16862	16757	1102087 90	9728	

Fig. 14: Forecasting result of France visitors

3.1. Analyzing the ability of forecasting models by MAPE, MSE, RMSE and MAD methods

It is well-known that a variety of methods is used to evaluate the accuracy for forecasting models. First, MAPE (Mean Absolute Percentage Error) is applied as a proportion of merit to recognize whether a data mining method is showing well or not. The MAPE is lower, the data mining method is better performance:

 $MAPE = \frac{1}{n} \sum \frac{|Actual - Forecast|}{Actual} \times 100;$

n: forecasting number of step

Meanwhile, the evaluation follows to these results:

- MAPE < 10% =>Excellent
- 10% < MAPE < 20% =>Good
- 20% < MAPE < 50% =>Reasonable
- MAPE > 50% => Poor

Next, the Mean Squared Error (MSE) summarize the way a regression line is next to a set of points. The distances from the points to the regression line are the errors and then square them. It is estimated by squaring the MAD:

$$MSE = \frac{1}{h+1} \sum_{t=s}^{s+h} \hat{x}_{t-1}(1) - x_t)^2$$

Root Mean Square Error (RMSE) is the standard deviation of the residuals (prediction errors). RMSE is usually used in forecasting. The smaller errors, the more exact ability to forecast.

RMSE=
$$\sqrt{\frac{1}{h+1}\sum_{t=s}^{s+h} \hat{x}_{t-1}(1) - x_t)^2}$$

The last is Mean Absolute Deviation (MAD) is the average distance between actual data sets and forecasted data sets. The forecasting model is more accurate when MAD's value is lower.

MAD=
$$\sum_{i=1}^{n} |e_i|$$

Table 7 indicates the efficiency of five models GM (1, 1), DGM (1, 1), DGM (2, 1), Verhulst and ARIMA to forecast tourism revenue. It is clearly that GM (1, 1), DGM (1, 1) and ARIMA are good to forecast total revenue with MAPES being lower than 10% and MSE, RMSE and MAD also being low. Verhulst is only

reasonable in the process. According to the results, the evaluation of DGM (2, 1) is poor, so it is chosen.

Table 8 presents similar method, because the parameter of MAPE, MSE, RMSE and MAD are lower than 10%, the performance of GM (1, 1), DGM (1, 1) Verhulst and ARIMA are good to do the forecasting; therefore, they are efficient models for this process. DGM (2, 1) shows a poor calculation, so it is not chosen to forecast this factor.

Table 9 illustrates the same method, GM (1, 1), DGM (1, 1), Verhulst and ARIMA are also the most appropriate models since the parameter of MAPE, MSE, RMSE and MAD are lower than 10%. Also, DGM (2, 1) is rejected to forecast international visitors.

Table 10 also apply the same method, by contrast the Table 9, Verhulst has excellent evaluation with low MAPE, MSE, RMSE and MAD (lower than 10%) and it is chosen for forecasting. GM (1, 1), DGM (1, 1), and ARIMA are also useful in this section with low MAPE, MSE, RMSE and MAD. DGM (2, 1) is not accepted for forecasting.

Table 7: Evaluating models with total revenue forecasting errors								
Models	GM (1, 1)	DGM (1, 1)	DGM (2, 1)	VERHULST	ARIMA			
MAPE	6.15%	6.3%	13.08%	8.89%	4.47%			
MSE	1.3E+14	1.49E+14	1.63E+15	6.26E+14	1.18E+14			
RMSE	11442841.42	12224161.03	40358644.72	25013244.34	10854371.43			
MAD	9285246.4	9714151.8	33649017	21588316.95	7624876.2			
Evaluation	Good	Good	Poor	Reasonable	Excellent			
	Table 8: E	valuating models with	domestic tourists for	ecasting errors				
Models	GM(1, 1)	DGM(1, 1)	DGM(2, 1)	VERHULST	ARIMA			
MAPE	1.25%	1.26%	7.25%	2.1%	2.15%			
MSE	2775539068	2773759466	69008814139	6238950282	9232644844			
RMSE	52683.385	52666.490	262695.290	78987.026	96086.653			
MAD	36742.9	36979.7	233516.1	64473	65518.9			
Evaluation	Excellent	Excellent	Poor	Good	Good			
	Table 9: Eva	aluating models with i	nternational visitors fo	orecasting errors				
Models	GM(1, 1)	DGM(1, 1)	DGM(2, 1)	VERHULST	ARIMA			
MAPE	2.16%	2.17%	8.84%	2.72%	2.7%			
MSE	69804107.7	69783873.7	1572822995	181905273.7	121162032.6			
RMSE	8354.885	8353.674	39658.832	13487.226	11007.363			
MAD	7044.5	7099.7	34910.4	10192.9	9628.9			
Evaluation	Excellent	Excellent	Poor	Good	Good			
	Table 10:	: Evaluating models w	ith Russia visitors fore	casting errors				
Models	GM(1, 1)	DGM(1, 1)	DGM(2, 1)	VERHULST	ARIMA			
MAPE	16.4%	16.43%	17.89%	7.43%	11.91%			
MSE	364570117	365199271.3	519431419.6	134129156.4	324466984			
RMSE	19093.719	19110.188	22791.038	11581.414	18012.967			
MAD	15726.6	15586.7	19456.6	8830.4	12486.3			
Evaluation	Good	Good	Poor	Excellent	Good			

Table 11 compares above five models, there are four good models in this situation, viz. GM (1, 1), DGM (1, 1), Verhulst and ARIMA; all of them are accepted to forecast Germany Visitors with MAPE, MSE, MRSE and MAD are low. Only DGM (2, 1) is rejected with poor result. Table 12 describes the same method, it is obvious that GM (1, 1), DGM (1, 1), Verhulst and ARIMA have low MAPE, MSE, RMSE and MAD (lower 10%), so they are allowed because they give the most accurate results. With the poor calculation, DGM (2, 1) is not accepted for the prediction.

	Table 11: Evaluating models with Germany visitors forecasting errors									
Models	GM(1, 1)	DGM(1, 1)	DGM(2, 1)	VERHULST	ARIMA					
MAPE	5.118%	5.117%	14189.18%	5.52%	5.58%					
MSE	3434183	3434751	9.15477E+13	4230107	4709137.9					
RMSE	1853.155	1853.308	9568056.907	2056.722	2170.055					
MAD	1627.8	1627.8	4424462.5	1765.8	1779.96					
Evaluation	Excellent	Excellent	Poor	Good	Good					

		valuating models wit		asting errors	
Models	GM(1, 1)	DGM(1, 1)	DGM(2, 1)	VERHULST	ARIMA
MAPE	6.66%	6.68%	3023.37%	9.5%	8.03%
MSE	1671475.4	1672145.6	7.8767E+11	3810717.7	2338220.6
RMSE	1292.856	1293.115	887507.565	1952.106	1529.124
MAD	1022.6	1025.6	442103.4	1423.9	1199.07
Evaluation	Excellent	Excellent	Poor	Good	Good

Table 13 outlines the similar method, DGM (1, 1) and ARIMA are accepted to forecast this situation thanks to good calculation MAPE, MSE, RMSE and MAD. GM (1, 1) and DGM (2, 1) obtain reasonable level. With high parameter of MAPE, MSE, RMSE and MAD, Verhulst is not chosen for forecasting.

Similarly, Table 14 represents only GM (1, 1) is good calculation with MAPE, MSE, RMSE and MAD accepted. DGM (1, 1) belongs to reasonable level.

Besides, there are three models evaluated that they are poor, so they are rejected in this section.

Finally, Table 15 gives information on ability to forecast USA Visitor. It can be seen that GM (1, 1) and DGM (1, 1) are chosen as the excellent results and accurate calculation with low MAPE, MSE, RMSE and MAD (lower 10%). The models summarizing the good results are Verhulst and ARIMA, so they are accepted. Notwithstanding, DGM (2, 1) is rejected with poor calculation for forecasting.

Table 13: Evaluating models with Korea visitors forecasting errors								
Models	GM(1, 1)	DGM(1, 1)	DGM(2, 1)	VERHULST	ARIMA			
MAPE	20.99%	18.8%	22.18%	349.21%	17.9%			
MSE	47155485.1	37366171.5	41971323.9	1.17201E+11	37127144.09			
RMSE	6866.985	6112.788	6478.528	342345.863	6093.205			
MAD	4895.1	4281.9	5431.5	140512.7	4288.02			
Evaluation	Reasonable	Good	Reasonable	Poor	Good			

Table 14: Evaluating models with China visitors forecasting errors								
Models	GM(1, 1)	DGM(1, 1)	DGM(2, 1)	VERHULST	ARIMA			
MAPE	19.33%	23.41%	21.43%	27.07%	46.41%			
MSE	76011286.8	147230546.3	703478132	372817367.5	185252000			
RMSE	8718.445	12133.860	26523.162	19308.479	13610.731			
MAD	5902.6	8392.5	16573.6	13953.3	10690.2			
Evaluation	Good	Reasonable	Poor	Poor	Poor			

Table 15: Evaluating models with USA visitors forecasting errors								
Models	GM(1, 1)	DGM(1, 1)	DGM(2, 1)	VERHULST	ARIMA			
MAPE	6.75%	6.76%	1256.97%	10.46%	10.52%			
MSE	1991173.2	1992614.8	1.22744E+11	4155559.4	3347439.4			
RMSE	1411.089	1411.600	350348.678	2038.519	1829.600			
MAD	1027.2	1030.2	181203.5	1617	1578.4			
Evaluation	Excellent	Excellent	Poor	Good	Good			

5. Conclusion and discussion

Tourism is defined as an important integrated economic sector with the content of deep culture, interdisciplinary fields and socialization. Developing tourism means that we respond the needs of domestic citizens and international tourists for sightseeing, recreation and relaxation which contribute to improve the intellectual standards of the people, job creation and socio-economic development. Moreover, this topic supports to study the current tre solutions for t industry. Tou ses the best ocal tourism developing industry all over the world and it also plays a significant role in economic growth (Bennett et al., 2004; Cortez, 2008). Vietnam is one of the nations in top of Asian area having developed tourism market, so Binh Thuan - one of the province in Vietnam consider that tourism is a key economic sector in province; recently, Binh Thuan has attracted a large number of both domestic visitors and international tourists and these numbers are predicted that they more and more rocker considerably.

Therefore, this study is focused on finding the best method describing the most accurate result easily to forecast the tourism demand. In this research, we applied five models, namely GM (1, 1), DGM (1, 1), DGM (2, 1), Verhulst and ARIMA to test and look for the models which augment best results and minimum the forecasting errors. As can be seen from the above tables (Table 7-15), GM (1, 1), DGM (1, 1), Verhulst and ARIMA are better to predict all the factors, viz. the tourism revenue, the proportion of tourists (both domestic visitors and international arrivals) because the parameter of MAPE, MSE, RMSE and MAD are accepted for the process. Nevertheless, DGM (2, 1) is a poor model to forecast demand of tourism in Binh Thuan Province (cf. Chia-Nan and Ty, 2013; Nguyen et al., 2015; Nguyen and Tran, 2018).

According to the results, it is easy to consider realistic consequence. It is fact that applying ARIMA for prediction of total revenue is the best choice. Otherwise, about the domestic visitors and international tourists, GM (1, 1), DGM (1, 1) and Verhust give the better calculation than the other models. Besides, the application of GM (1, 1), DGM (1, 1), Verhulst and ARIMA to forecast the number of visitors of top six markets (Russia, Germany, France, Korea, China and USA) sending the largest number of tourists describes good results and these numbers will go up in next 5 years. During the forecasting process, the number of Chinese tourists has the strongest upward trend, the number of Russian and Korean arrivals also increases and the numbers of others fluctuate by year. For all the factors, DGM (2, 1) is rejected to predict due to the poor results. In general, GM (1, 1), DGM (1, 1), Verhulst and ARIMA are concise and accurate models for forecasting tourism demand in Binh Thuan.

In conclusion, it is no doubt that tourism industry has developed rapidly for recent years in Binh Thuan. Hence, the government has to propose suitable policies to develop local tourism industry to serve the large quantity of tourists, also attract investors and invest construction potential projects.

References

- Chia-Nan W and Ty NN (2013). Forecasting the manpower requirement in Vietnamese tertiary institutions. Asian Journal of Empirical Research, 3(5): 563-575.
- Cortez N (2008). Patient without borders: The emerging global market for patients and the evolution of modern health care. Forthcoming Indiana Law Journal, 83(1): 71-132.
- Nguyen NT and Tran TT (2018). A two-stage study of grey system theory and DEA in strategic alliance: An application in Vietnamese fertilizing industry. International Journal of Advanced and Applied Sciences, 5(9): 73-81.
- Nguyen NT, Tran TT, Wang CN, and Nguyen NT (2015). Optimization of strategic alliances by integrating DEA and grey model. Journal of Grey System, 27(1): 38-56.
- Song H and Li G (2008). Tourism demand modelling and forecasting: A review of recent research. Tourism Management, 29(2): 203-220.