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Abstract: The inevitability of measurement errors and/or humans of subjectivity in data collection
processes make accumulated data imprecise, and are thus called fuzzy data. To adapt to this fuzzy
domain in a manufacturing process, a traditional u control chart for monitoring the average number
of nonconformities per unit is required to extend. In this paper, we first generalize the u chart, named
fuzzy u-chart, whose control limits are built on the basis of resolution identity, which is a well-known
fuzzy set theory. Then, an approach to fuzzy-logic reasoning, incorporating the decision-maker’s
varying levels of optimism towards the online process, is proposed to categorize the manufacturing
conditions. In addition, we further develop a condition-based classification mechanism, where the
process conditions can be discriminated into intermittent states between in-control and out-of-control.
As anomalous conditions are monitored to some extent, this condition-based classification mechanism
can provide the critical information to deliberate the cost of process intervention with respect
to the gain of quality improvement. Finally, the proposed fuzzy u-chart is implemented in the
Vietnam textile dyeing industry to replace its conventional u-chart. The results demonstrate that the
industry can effectively evade unnecessary adjustments to its current processes; thus, the industry
can substantially reduce its operational cost and potential loss.

Keywords: process monitoring and control; resolution-identity theorem; fuzzy u-chart; level
of optimism; condition-based classification; textile-dyeing nonconformities

1. Introduction

Competitive marketplaces require industrial manufacturers to provide consistent and reliable
quality products to preserve their survival and sustainable growth. Therefore, the manufacturers keenly
explore for optimal strategies to not only lower their percentage of nonconformists, but to also slash
manufacturing costs, and to fulfill customer satisfaction [1]. Nowadays, manufacturers pay special
efforts in establishing effective quality management systems and programs. Walpole et al. [2] confirmed
that the quality-control scheme has been utilized as a powerful tool for manufacturers to achieve their
production effectiveness as well as to sustain their quality-based competitive advantages.

Practically, any mistaken intervention of processes, delay of alarming excessive product defects,
and scraps or reworks of final products will result in an increase of production costs. Thus, in the
monitoring and controlling of online manufacturing processes, Shewhart-type control charts have
been widely employed due to their notable capability of early detection of an abnormal process [1,3].
The Shewhart-type control charts fall into two categories, called variable and attribute control charts.
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While the former monitors the variable-type data, which can be quantitatively measured on a continuous
scale such as a thermometer, a weighing scale, or a tape rule, the latter monitors the attribute-type data,
which can be qualitatively described, for example, as good or defective, as possessing or not possessing
a particular characteristic.

A typical control chart consists of a center line (CL) and upper and lower control limits (UCL
and LCL) for monitoring the process’s key quality characteristic (KQC). Their constructions are based
on a moderate number of subgroup KQC samples, where each subgroup sample (randomly drawn) has
either an equal or unequal sample size. According to the statistics information of sequentially collected
KQC sample data, the control limits categorize the online process condition. When an outlier or any
systematic pattern is detected on the chart, it implies the process is affected by some assignable causes
where the subsequently well-structured corrective actions are necessitated; otherwise, we conclude
that the process is in statistical control, a desired (stable) state where no interference is needed [1].

The establishment of control charts requires fully precise random data gathered from the KQC
of the process. However, the natural limitations inherited in practical applications have dampened this
possibility. For example, the inevitability of gague errors existing in a measurement system [4,5] and in
data collection processes where the human subjectivity arises from the decision-makers’ vast variety of
intelligence perceptions and experiences all make accumulated data imprecise [6–9]. Moreover, for the
monitoring and controlling of online manufacturing processes, the traditional control charts carrying
a binary classification of the process condition, namely in control and out of control,"have failed to
effectively adapt to this fuzzy domain. The extensions of traditional control charts, named “ fuzzy
control charts”, become mandated [7,9–14]

Over the past decade, worldwide scholars have paid a special interest in proposing and
constructing a number of fuzzy control charts; examples include Senturk and Erginel [9] with fuzzy

X̃− R̃ and X̃− S̃ control charts, Shu and Wu [14] with fuzzy x and R control charts, Nguyen et al. [15]
with fuzzy x and s control charts, Shu et al. [4] with fuzzy MaxGWMA control chart, and
Morabia et al. [16] with fuzzy x control chart to deal with multiple objective decision-making problems.
The core issue of the contributions above is centered on the fuzzy-variable control charts.

For the fuzzy-attribute control charts, Wang and Raz [17] pioneered with the linguistic-type
KQCs such as perfect, good, medium, poor and bad; unfortunately, Kanagawa et al. [18] claimed
that Wang and Raz’s [17] development failed to incorporate the probability distributions for linguistic
data when constructing the control charts. Although their assertion is rational in theory, in practice
the justifiable probability distributions are not easily determined [19,20]. For other declarations,
Shu and Wu [14] and Woodall et al. [21] also emphasized the invalidity of lingistic-type control charts,
if their membership functions of linguistic terms were arbitrarily assumed on a given scale without
contemplation of induced fuzziness from the judgment of experts.

Moreover, in the fuzzy environment, the binary categorization of the online manufacturing
condition still has certain arguments to be fulfilled. Many previous methods performed the binary
categorization by defuzzing data on the basis of the fuzzy midrange, fuzzy mode, fuzzy median and
fuzzy average; however, such techniques have also raised another consequence of losing the fuzziness
information in the manufacturing data where the misclassified possibility of the manufacturing process
could be intolerable [14,22,23].

Thus, several approaches to preserve the fuzziness of vague data have been proposed. The evidence
can be seen from the necessity index of strict dominance (NISD) by Grzegorzeski and Hryniewicz [24],
acceptable percentage index called direct fuzzy approach (DFA) by Gülbay and Kahraman [13], fuzzy
dominance approach (FDA) by Shu and Wu [14]. Certain limitations exist in their methods. While the
NISD is content-dependent [25], the DFA fails to obtain the fuzzy sample means and variances with the
simple using of α-cuts [14]. In addition, the FDA approach can only perform nicely at a dominance degree
greater than 0.5 [15,26].

To overcome the aforementioned issues, we first generalize the u chart, named fuzzy u-chart
whose control limits are built on the basis of Resolution Identity, a well-known fuzzy set theory.
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Then, an approach of fuzzy-logic reasoning is proposed for the fuzzy control limits to categorize
the online manufacturing conditions. Furthermore, we develop a condition-based classification
mechanism, where the process conditions can be discriminated into intermittent states between
in-control and out-of-control. It can be noted that this novel classification mechanism is rooted
on a robust fuzzy-ranking scheme that assesses the magnitude of left-right areas and centroids of fuzzy
numbers to provide more satisfactory reasoning [27].

This paper is organized as follows. Section 2 briefly provides key characteristics of the traditional
u chart to support part of Section 3, the procedure of constructing the fuzzy u-chart. It is well noted
that these two sections depart from the approach presented in [26,28]. Here, the core issue is centered
on the fuzzy-attributed control charts, fuzzy u-chart, while Nguyen et al. [26] and Shu et al. [28]
stressed on the fuzzy-variable control charts, x and s control charts. Section 4 first reviews the Nguyen
and Hien’s method [27] which is then extended for better performance of ranking results. We further
develop a condition-based classification mechanism, where the process conditions can be discriminated
into intermittent states between in-control and out-of-control states. In Section 5, the established fuzzy
u-chart is implemented in the Vietnam textile dyeing industry to replace its conventional u-chart. Some
concluding remarks make up the last section.

2. Review of Traditional u-Chart

Literally, the term “u-chart” is usually used to monitor the average number of nonconformities
per unit when the subgroup sample size is either only one inspection unit or several units [1,2].
A nonconformity (also known as a defect) is the product that deviates from a specification, a standard,
or an expectation. A nonconforming product usually contains one or more non-conformists whose
severity directly influences on the product quality. Typically, the u-chart is constructed as follows:

In m initial samples, let xi denote the number of non-conformities in the ith sample which has
ni inspection units (i = 1, m). Then, the average number of non-conformists per unit, notated by ui,
is calculated by

ui =
xi
ni

(1)

The grand average µu of u and variance σ2 of each sample are defined as

µu =
∑m

i=1 xi

∑m
i=1 ni

= u (2)

σ2
ui

=
u
ni

(3)

Therefore, the control limits for u-chart are obtained as

UCLu = u + K

√
u
ni

CLu = u (4)

LCLu = max

{
0, u− K

√
u
ni

}

where K is the number of standard deviation unit. In common practice, K = 3 usually used as the scale
of an allowable tolerance [1,2].

3. Construction of Fuzzy u-Chart

Let us consider m samples each with ni (i = 1, m) sample size. Let FO1, FO2, · · · , FOm be fuzzy
observations (fuzzy data) which are assumed to be fuzzy real numbers. Based on those observed fuzzy
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data, a fuzzy set theory [29–31] will be applied to construct the upper and lower control limits for
u-chart, which is named fuzzy u-chart.

For any given α ∈ [0, 1] (called α cut), the corresponding real-value data (α-level set) FOL
i,α

and FOU
i,α for i = 1, m are easily acquired. Then the real-value data FOL

1,α, · · · , FOL
m,α and

FOU
1,α, · · · , FOU

m,α (i = 1, m) are used in the Equations (1) and (2) for estimating the fuzzy control
limits of FUL

i,α and FUU
i,α. The outcome is

FUU
i,α =

FOU
i,α

ni

FUU
α =

∑m
i=1 FOU

i,α

∑m
i=1 ni

FUL
i,α =

FOL
i,α

ni

FUL
α =

∑m
i=1 FOL

i,α

∑m
i=1 ni

Substituting the above parameters into Equation (4), we have the following

upU
FUi,α

≡
(

UCLFUi,α

)U
= FUU

α + K

√
FUU

α
ni

cU
FUi,α

≡
(

CLFUi,α

)U
= FUU

α

loU
FUi,α

≡
(

LCLFUi,α

)U
= max

{
0, FUU

α − K

√
FUU

α
ni

}


upL
FUi,α

≡
(

UCLFUi,α

)L
= FUL

α + K

√
FUL

α
ni

cL
FUi,α

≡
(

CLFUi,α

)L
= FUL

α

loL
FUi,α

≡
(

LCLFUi,α

)L
= max

{
0, FUL

α − K

√
FUL

α
ni

}
(a) Construction of Fuzzy Upper Control Limit ũpFUi

Let’s consider the closed interval Ai,α according to the results above. We define

Ai,α =
[
min

{
upL

FUi,α
, upU

FUi,α

}
, max

{
upL

FUi,α
, upU

FUi,α

}]
≡ [lui,α, uui,α]

where
lui,α = min

{
upL

FUi,α
, upU

FUi,α

}
(5)

uui,α = max
{

upL
FUi,α

, upU
FUi,α

}
(6)

By applying the resolution-identity theorem [29–31], the membership function of the upper
control limit, one of the control limits’ fuzzy numbers (CLFNs) can be defined as

ξũpFUi
(c) = sup

α∈[0,1]
α · 1Ai,α(c).

Since each FOi is a fuzzy real number, FUL
i,α and FUU

i,α are continuous with respect to α on [0, 1].
As a consequence, the α-level set ũpFUi,α

of fuzzy upper control limit ũpFUi
can be simply rewritten as

ũpFUi,α
=

{
c : ξFUi (c) ≥ α

}
=

[
min

α≤β≤1
lui,β, max

α≤β≤1
uui,β

]
=

[(
ũpFUi

)L

α
,
(

ũpFUi

)U

α

]
(7)



Symmetry 2017, 9, 116 5 of 17

where lui,α and uui,α are shown in Equations (5) and (6).

Furthermore, from Equation (7), the relationship between
(

ũpFUi

)L

α
and upL

FUi,α
, upU

FUi,α
is found as

(
ũpFUi

)L

α
= min

α≤β≤1
lui,β

= min
α≤β≤1

min
{

upL
FUi,β

, upU
FUi,β

}
. (8)

Similarly, the relationship between
(

ũpFUi

)U

α
and upL

FUi,α
, upU

FUi,α
is

(
ũpFUi

)U

α
= max

α≤β≤1
uui,β

= max
α≤β≤1

max
{

upL
FUi,β

, upU
FUi,β

}
. (9)

(b) Construction of Fuzzy Lower Control Limit FLFUi

Likewise, let us consider the closed interval Bi,α. We define

Bi,α =
[
min

{
loL

FUi,α
, loU

FUi,α

}
, max

{
loL

FUi,α
, loU

FUi,α

}]
≡ [lli,α, uli,α]

where
lli,α = min

{
loL

FUi,α
, loU

FUi,α

}
(10)

uli,α = max
{

loL
FUi,α

, loU
FUi,α

}
(11)

From the resolution-identity theorem [29–31], the membership function of the lower control limit,
one of CLFNs is determined by

ξ l̃oFUi
(c) = sup

α∈[0,1]
α · 1BI,α(c).

Since each FOi is a fuzzy real number, FUL
i,α and FUU

i,α are continuous over α on [0, 1]. Hence,

the α-level set l̃oFUi,α of fuzzy upper control limit l̃oFUi can be simply attained as

l̃oFUi,α =
{

c : ξFUi (c) ≥ α
}

=

[
min

α≤β≤1
lli,β, max

α≤β≤1
uli,β

]
=

[(
l̃oFUi

)L

α
,
(

l̃oFUi

)U

α

]
(12)

where lli,α and uli,α are expressed in Equations (10) and (11).

From Equation (12), the corresponding between
(

l̃oFUi

)L

α
and loL

FUi,α
, loU

FUi,α
is realized as

(
l̃oFUi

)L

α
= min

α≤β≤1
lli,β

= min
α≤β≤1

min
{

loL
FUi,β

, loU
FUi,β

}
. (13)



Symmetry 2017, 9, 116 6 of 17

Likewise, the relation between
(

l̃oFUi

)U

α
and loL

FUi,α
, loU

FUi,α
is

(
l̃oFUi

)U

α
= max

α≤β≤1
uli,β

= max
α≤β≤1

max
{

loL
FUi,β

, loU
FUi,β

}
. (14)

4. Classification Conditions

In this section, we will first review a fuzzy ranking method proposed by Nguyen and Hien [27],
and then extend their ranking rules to provide more satisfactory reasoning for classifying
manufacturing process conditions. Its preferable performance over the previous study in certain
cases is illustrated by the comparative analysis shown in Section 5.

4.1. Ranking Fuzzy Numbers with Nguyen & Hien’s Approach

Let’s consider n fuzzy numbers Ai = (ai, bi, ci, di; wi) (i = 1, n). The membership functions of the
i th number are defined as

ξAi (x) =


f L
Ai
(x) if x ∈ [bi, ci]

wi if x ∈ [ci, di]

f R
Ai
(x) if x ∈ [di, ei]

0 otherwise,

Let gL
Ai
(y) and gR

Ai
(y) respectively denote the inverse functions of ξL

Ai
(x) and ξR

Ai
(x). We also

define amin = min{a1, . . . , an} and dmax = max{d1, . . . , dn}.

Definition 1. (Left-Right areas) The left area of Ai, SL
Ai

, which is from the amin to gL
Ai
(y), can be defined as

SL
Ai

=
∫ wi

0

[
gL

Ai
(y)− amin

]
dy. (15)

and its right area, SR
Ai

, which goes from gR
Ai
(y) to dmax, can be set as

SR
Ai

=
∫ wi

0

[
dmax − gR

Ai
(y)
]

dy. (16)

The SL
Ai

and SR
Ai

are visually plotted on Figure 1 [32–36].

Figure 1. Left and right areas of Ai.

Definition 2. An expectation value of centroid of Ai, denoted by ECi, is defined [32,33,37–40] as

ECi =

∫ di
ai

xξAi (x)dx∫ di
ai

ξAi (x)dx
. (17)
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From the statistical point of view, ECi is the weighted mean of Ai. It implies that when
Ai = (a, a, a, a; wi), we can have CVi = a.

From the above definitions, Nguyen and Hien [27] proposed a ranking index for Ai = (ai, bi, ci, di; wi)

(i = 1, n) at each level of β, denoted by LRACβ
i .

LRACβ
i =

[
βSR

Ai
+ (1− β)SL

Ai

]
ECi (18)

where β ∈ [0, 1] is called “level of optimism” that presents the decision-maker’s attitude towards risk.
The β = 0 indicates “the decision-maker with a totally pessimistic attitude towards risk”, β = 1 indicates “the
decision-maker with a totally optimistic attitude towards risk”, and β = 0.5 indicates “the decision-maker with
a neutral attitude towards risk”.

Two fuzzy numbers Ai and Aj can be ranked by applying the following rules:

• Ai � Aj at the optimism level of β if and only if LRACβ
i > LRACβ

j .

• Ai ≺ Aj at the optimism level of β if and only if LRACβ
i < LRACβ

j .

• Ai ≈ Aj at the optimism level of β if and only if LRACβ
i = LRACβ

j .

Notably, Nguyen and Hien [27] showed that the expectation value of the centroid ECi for the
LRAC index magnifies the ranking discriminatory power; hence, the method has more efficient results
in many cases than that of Yu & Dat [34].

4.2. Our Extended Ranking Rules

Now, let’s consider DSβ
i−j, the disparity amount of Ai’s and Aj’s ranking indexes at the optimism

level of β.

DSβ
i−j = LRACβ

i − LRACβ
j

= β
(

SR
Ai

ECi − SR
Aj

ECj

)
+ (1− β)

(
SL

Ai
ECi − SL

Aj
ECj

)
DSβ

i−j = β4SECR
i−j + (1− β)4SECL

i−j (19)

where4SECR
i−j = SR

Ai
ECi − SR

Aj
ECj and4SECL

i−j = SL
Ai

ECi − SL
Aj

ECj.
With Equation (19), the ranking rules mentioned in Section 4.1 can be rewritten as

• Ai � Aj at the optimism level of β if and only if DSβ
i−j > 0.

• Ai ≺ Aj at the optimism level of β if and only if DSβ
i−j < 0.

• Ai ≈ Aj at the optimism level of β if and only if DSβ
i−j = 0.

Because DSβ
i−j, expressed in Equation (19), is a monotonous function of β, then DSβ

i−j = 0 can
only occur in the following two cases

• 4SECR
i−j < 0 and4SECL

i−j > 0; or,

• 4SECR
i−j > 0 and4SECL

i−j < 0.

Furthermore, to sufficiently represent the fuzziness information residing in the collected data,
we propose an alternative approach. This approach is capable of comparing two fuzzy numbers
into four linguistic-sense consequences that include larger “�”, rather larger “�”, rather smaller “�”,
and smaller “≺”.

To achieve this, we first define three new terms, namely “benchmark level β0”, “step of change in the
optimism level4β” and “unit ranking”.

Definition 3. The benchmark level β0 ∈ (0, 1) is an optimism level at which DSβ0
i−j is equal to 0.
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Definition 4. The step of change in the optimism level (4β) is the fixed difference between two consecutive
optimism levels. The4β = βi+1− βi is a constant for the n optimism levels β1, β2, · · · , βn.

Definition 5. The unit disparity is the disparity of ranking indexes of Ai and Aj caused by the step of change
of the optimism level.

In addition, in consideration of the difference of DSβ
i−j at 4β, the Definition 5 can be further

derived as

4DSβ2−β1
i−j = |DSβ2

i−j −DSβ1
i−j|

= (β2− β1)|4SECR
i−j −4SECL

i−j|

4DS4β
i−j = 4β|4SECR

i−j −4SECL
i−j| (20)

Here4DS4β
i−j represents a change difference of the disparity obtained from Ai’s and Aj’s ranking

indexes. For a given4β, the4DS4β
i−j can be easily acquired.

Therefore, two arbitrarily chosen fuzzy numbers Ai and Aj can be ranked according to the
following rules

(1) A1 � A2 if and only if one of the conditions below occurs DSβ
i−j > 0 ∀β ∈ [0, 1];(

DSβ
i−j −DSβ0

i−j

)
> 4DS4β

i−j > 0.

(2) Ai ≺ Aj if and only if one of the below conditions holds DSβ
i−j < 0 ∀β ∈ [0, 1];(

DSβ
i−j −DSβ0

i−j

)
< −4DS4β

i−j < 0.

(3) Ai � Aj at the optimism level β if and only if{
4SECR

i−j ×4SECL
i−j < 0

0 < DSβ
i−j ≤ 4DS4β

i−j

(4) Ai � Aj at the optimism level β if and only if{
4SECR

i−j ×4SECL
i−j < 0

−4DS4β
i−j ≤ DSβ

i−j ≤ 0.

4.3. Proposed Classification

By integrating the aforementioned fuzzy u-chart and fuzzy ranking approach, we are able
to categorize the online manufacturing conditions.

Based on FUi, a fuzzy average number obtained from Section 3, we further develop
condition-based classification rules with respect to a certain optimism level β, where the process
conditions can be discriminated into intermittent states between in-control and out-of-control.

(1) The process is in-control if one of the below situations holds
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(a)

 DSβ
ũpFUi

−FUi
> 0 ∀β ∈ [0, 1]

DSβ

FUi−l̃oFUi

> 0 ∀β ∈ [0, 1]

(b)



DSβ
ũpFUi

−FUi
> 4DS4β

ũpFUi
−FUi

4SECL
ũpFUi

−FUi
×4SECR

ũpFUi
−FUi

< 0

DSβ

FUi−l̃oFUi

> 4DS4β

FUi−l̃oFUi

4SECL
FUi−l̃oFUi

×4SECR
FUi−l̃oFUi

< 0

(c)


DSβ

ũpFUi
−FUi

> 0 ∀β ∈ [0, 1]

DSβ

FUi−l̃oFUi

> 4DS4β

FUi−l̃oFUi

4SECL
FUi−l̃oFUi

×4SECR
FUi−l̃oFUi

< 0

(d)


DSβ

FUi−l̃oFUi

> 0 ∀β ∈ [0, 1]

DSβ
ũpFUi

−FUi
> 4DS4β

ũpFUi
−FUi

4SECL
ũpFUi

−FUi
×4SECR

ũpFUi
−FUi

< 0

(2) The process is out of control if one of the following conditions is true

(a) DSβ
ũpFUi

−FUi
< 0 ∀β ∈ [0, 1].

(b)


DSβ

ũpFUi
−FUi

> 0 ∀β ∈ [0, 1]

DSβ

FUi−l̃oFUi

≤ −4DS4β

FUi−l̃oFUi

4SECL
FUi−l̃oFUi

×4SECR
FUi−l̃oFUi

< 0

(c) DSβ

FUi−l̃oFUi

< 0 ∀β ∈ [0, 1].

(d)


DSβ

FUi−l̃oFUi

> 0 ∀β ∈ [0, 1]

DSβ
ũpFUi

−FUi
≤ −4DS4β

ũpFUi
−FUi

4SECL
ũpFUi

−FUi
×4SECR

ũpFUi
−FUi

< 0

(3) The process is rather in-control if one of the below situations occurs

(a)



DSβ
ũpFUi

−FUi
> 0 ∀β ∈ [0, 1]

DSβ

FUi−l̃oFUi

≤ 4DS4β

FUi−l̃oFUi

DSβ

FUi−l̃oFUi

> 0

4SECL
FUi−l̃oFUi

×4SECR
FUi−l̃oFUi

< 0
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(b)



DSβ

FUi−l̃oFUi

> 0 ∀β ∈ [0, 1]

DSβ
ũpFUi

−FUi
≤ 4DS4β

ũpFUi
−FUi

DSβ
ũpFUi

−FUi
> 0

4SECL
ũpFUi

−FUi
×4SECR

ũpFUi
−FUi

< 0

(c)



DSβ
ũpFUi

−FUi
≤ 4DS4β

ũpFUi
−FUi

DSβ
ũpFUi

−FUi
> 0

4SECL
ũpFUi

−FUi
×4SECR

ũpFUi
−FUi

< 0

DSβ

FUi−l̃oFUi

≤ 4DS4β

FUi−l̃oFUi

DSβ

FUi−l̃oFUi

> 0

4SECL
FUi−l̃oFUi

×4SECR
FUi−l̃oFUi

< 0

(4) The process is rather out-of-control if one of the following conditions is fulfilled

(a)



DSβ
ũpFUi

−FUi
> 0 ∀β ∈ [0, 1]

DSβ

FUi−l̃oFUi

> −4DS4β

FUi−l̃oFUi

DSβ

FUi−l̃oFUi

≤ 0

4SECL
FUi−l̃oFUi

×4SECR
FUi−l̃oFUi

< 0

(b)



DSβ
ũpFUi

−FUi
> 0

4SECL
ũpFUi

−FUi
×4SECR

ũpFUi
−FUi

< 0

DSβ

FUi−l̃oFUi

> −4DS4β

FUi−l̃oFUi

DSβ

FUi−l̃oFUi

≤ 0

4SECL
FUi−l̃oFUi

×4SECR
FUi−l̃oFUi

< 0

(c)



DSβ

FUi−l̃oFUi

> 0 ∀β ∈ [0, 1]

DSβ
ũpFUi

−FUi
> −4DS4β

ũpFUi
−FUi

DSβ
ũpFUi

−FUi
≤ 0

4SECL
ũpFUi

−FUi
×4SECR

ũpFUi
−FUi

< 0

(d)



DSβ

FUi−l̃oFUi

> 0

4SECL
FUi−l̃oFUi

×4SECR
FUi−l̃oFUi

< 0

DSβ
ũpFUi

−FUi
> −4DS4β

ũpFUi
−FUi

DSβ
ũpFUi

−FUi
≤ 0

4SECL
ũpFUi

−FUi
×4SECR

ũpFUi
−FUi

< 0
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Remark 1. The procedure to conduct our fuzzy u-chart and evaluate the process performance is briefly
generalized as follows:

Step 1: From the collected data, we first construct the fuzzy control limits as presented in Section 3.
Step 2: With each ũpFUi

, l̃oFUi , and FUi, calculate its left area, right area and expected centroid as shown
in Definition 1 and 2.

Step 3: For each β, calculate DSβ,4SECL, and4SECR for each pair
(

ũpFUi
, FUi

)
and

(
FUi, l̃oFUi

)
from

Equation (19).

Step 4: With a given 4β, calculate 4DS4β for each pair
(

ũpFUi
, FUi

)
and

(
FUi, l̃oFUi

)
from

Equation (20).
Step 5: The results obtained from Step 3 and 4 are used in the classification mechanism presented

in Section 4.3.

5. Practical Application

The recent advances in science, technology, and global integration have led to profound
competition amongst businesses. As customers nowadays have a stronger negotiating power,
providing them better quality products/services with a reasonable price becomes ever so critical
to the survival and development of every business organization [41,42]. Lee et al. [43] indicated that
a failure in achieving customers’ expected quality will lead to a long production cycle time, an increase
in production and warranty cost, as well as a significant defection in the number of customers.

In practice, there are several controllable and uncontrollable factors affecting the quality
of industrial products. In several labor-intensive industries, for example, textile/garment and footwear
industries, workmanship is identified as one of the key factors. The importance of workmanship
is derived from major parts of the processes being handled by workers practical working experience,
which directly influences the quality of the products manufactured. In such industries, the quality
of final products practically depends on the subjective perception, knowledge, mood and behavior
of the inspectors, also known as quality controllers or assurers who check individual parts,
semi-products and final products at different stages in the processes to make sure that their products
meet certain specifications set by customers [41]. Consequently, with the manual inspection of random
samples, certain limitations in terms of inaccuracy, inconsistency and inefficiency, are obviously
inevitable; hence, the recorded data are considered fuzzy [4,41,44]. To have more objective evaluation,
automatic inspection systems have been preferably installed despite of their high cost [42].

Literally, Wong et al. [41] provided a critical review of several approaches in detecting different
defects and found that their focus was mainly on defect detection instead of defect diagnosis to identify
root causes of defects and implement corrective actions. Lee et al. [43] further pinpointed that
the existing detection methods treat defects individually without considering their relationships.
As a consequence, the general performance of manufacturing processes fails to be appropriately
monitored to implement proper adjustments to improve the product quality. To fulfill the gap in the
fuzzy environment, this paper proposes using the fuzzy u-chart with the classification mechanism
discussed in Section 4.3. To evaluate the performance of our proposed fuzzy u-chart, we employed the
chart in a typical example of monitoring the defects in dyed cloth in textile industry.

5.1. Construction of Fuzzy u-Chart

This study investigates dyeing defects in eleven large textile dyeing companies with strong brands
located in the South of Vietnam. In each company, we worked with experienced quality controllers
who were asked to identify defects/nonconformities occurring in several rolls of dyed cloth based
on their practical experience and knowledge of customer’s expectation. Figure 2 shows the common
nonconformities in the dyeing industry.
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a)	Cloudy	 b)	Shade	variation	 c)	Tonal	variation	 d)	Poor	light	fastness	

	

e)	Dyed	stain	 f)	Color	crocking	 g)	White	spot	 h)	Shade	bar		

	

	 	 	 	 	
	 	 	 	 	
	

Figure 2. Common defects in dyed cloth. (a) Cloudy; (b) Shade variation; (c) Tonal variation; (d) Poor
light fastness; (e) Dyed stain; (f) Color crocking; (g) White spot; (h) White spot.

In each sample, four to five rolls of 50 square meters were randomly selected for inspection;
and the number of non-conformists of thirty actual observations were recorded. Table 1 shows a typical
example of white spot data collected from one of the eleven companies. Specifically, each subgroup
was appropriately labeled and each quality controller inspected two certain subgroups randomly three
times at different intervals. It was found that the number of nonconformists detected each time in the
same subgroup was different, indicating that the human subjectivity obviously affects the counting
of the dyed defects; thus, the recorded data are considered as fuzzy numbers.

Table 1. The number of white spots detected.

Sub. Size FOi Sub. Size FOi

1 5 1 2 3 16 5 3 4 5
2 4 2 4 5 17 5 10 13 14
3 4 2 3 4 18 4 4 5 6
4 5 3 6 7 19 5 4 5 6
5 5 3 5 6 20 4 5 8 10
6 4 2 5 6 21 4 5 7 8
7 5 5 7 9 22 5 6 7 9
8 4 4 6 7 23 5 4 7 8
9 5 4 6 7 24 5 2 5 6
10 5 4 5 6 25 5 4 6 7
11 5 3 4 5 26 5 4 5 7
12 4 2 3 4 27 5 5 8 9
13 4 3 4 5 28 5 4 6 8
14 5 3 4 5 29 4 3 5 6
15 5 6 10 11 30 4 3 5 7

From the data in Table 1, relevant u-chart is constructed as in Figure 3.
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Figure 3. u-Chart for monitoring the white spots in dyed cloth.

5.2. Comparative Analysis

Apparently, the categorization rules shown in Section 4.3 are identical to those of Shu et al. [44].
Here, we perform a comparative analysis between two approaches.

Based on the proposed classification mechanism, the performance of the current dyeing process
can be effectively monitored with a u-chart. For brevity, this section displays the classifying results
for only five different values β = 0.5, 0.6, 0.7, 0.8 as shown in Tables 2 and 3. We can observe that
twenty-nine out of the thirty subgroups investigated are considered in-control at these optimism
levels. For a comparative analysis between Shu et al. [44] and Nguyen and Hien [27] in this case,
both approaches all show a warning signal at the 17th subgroup. While the former classifies the
sample as rather out-of-control at the optimism level of 0.5, rather in-control at 0.6 and in-control if the
optimism level is larger than 0.6, the latter classifies it as out-of-control for the optimism level less
than 0.8 and rather out-of-control at the level of 0.8. It implies that in this case Nguyen and Hien’s [27]
approach provides a more discriminatory power.

These results also indicate that for more optimistic decision-makers, the process is more likely
to be considered in statistical control. This finding shows that the evaluation of the dyed quality or the
process status is critically affected by human behavior, i.e., the level of optimism. More importantly,
an investigation is also conducted to look for the assignable causes occurred in the production of the
mentioned sample. Once the significant causes are found, having proper corrective actions undertaken
to either eliminate or reduce their negative impacts can greatly improve the cloth dyeing quality.
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Table 2. u-Chart classification based on Shu et al.’s [44] approach.

Sub. 0.5 0.6 0.7 0.8 4S∗ 0.5 0.6 0.7 0.8

1 2.6312 2.6459 2.6606 2.6753 0.0147 In In In In
2 2.2522 2.2657 2.2792 2.2927 0.0135 In In In In
3 2.3114 2.3228 2.3342 2.3456 0.0114 In In In In
4 1.4553 1.4699 1.4845 1.4991 0.0146 In In In In
5 1.6654 1.6739 1.6824 1.6909 0.0085 In In In In
6 1.9181 1.9316 1.9451 1.9586 0.0135 In In In In
7 1.1658 1.1871 1.2084 1.2297 0.0213 In In In In
8 1.4466 1.4641 1.4816 1.4991 0.0175 In In In In
9 1.4144 1.4241 1.4338 1.4435 0.0097 In In In In

10 1.5025 1.5128 1.5231 1.5334 0.0103 In In In In
11 2.2784 2.2999 2.3214 2.3429 0.0215 In In In In
12 2.8702 2.8820 2.8938 2.9056 0.0118 In In In In
13 2.2506 2.2569 2.2632 2.2695 0.0063 In In In In
14 1.9564 1.9685 1.9806 1.9927 0.0121 In In In In
15 0.9199 0.9961 1.0723 1.1485 0.0762 In In In In
16 2.1772 2.1829 2.1886 2.1943 0.0057 In In In In
17 −0.0083 0.0015 0.0113 0.0211 0.0098 R-Out R-In In In
18 1.3923 1.4051 1.4179 1.4307 0.0128 In In In In
19 1.8529 1.8666 1.8803 1.8940 0.0137 In In In In
20 1.1172 1.1283 1.1394 1.1505 0.0111 In In In In
21 1.1382 1.1449 1.1516 1.1583 0.0067 In In In In
22 1.2306 1.2371 1.2436 1.2501 0.0065 In In In In
23 1.4805 1.4894 1.4983 1.5072 0.0089 In In In In
24 1.9884 1.9959 2.0034 2.0109 0.0075 In In In In
25 1.8368 1.8447 1.8526 1.8605 0.0079 In In In In
26 1.8165 1.8217 1.8269 1.8321 0.0052 In In In In
27 1.0131 1.0229 1.0327 1.0425 0.0098 In In In In
28 1.3446 1.3507 1.3568 1.3629 0.0061 In In In In
29 1.4602 1.4695 1.4788 1.4881 0.0093 In In In In
30 1.4558 1.4625 1.4692 1.4759 0.0067 In In In In

Notes: 4S∗ = 4DS4β=0.1
i−j .

Table 3. u-Chart classification based on Nguyen & Hien’s [27] approach.

Sub. 0.5 0.6 0.7 0.8 4N∗ 0.5 0.6 0.7 0.8

1 3.2995 3.3180 3.3365 3.355 0.0185 In In In In
2 2.8243 2.8415 2.8587 2.8759 0.0172 In In In In
3 2.8985 2.9129 2.9273 2.9417 0.0144 In In In In
4 1.8249 1.8433 1.8617 1.8801 0.0184 In In In In
5 2.0884 2.0991 2.1098 2.1205 0.0107 In In In In
6 2.4053 2.4224 2.4395 2.4566 0.0171 In In In In
7 1.4619 1.4887 1.5155 1.5423 0.0268 In In In In
8 1.8142 1.8363 1.8584 1.8805 0.0221 In In In In
9 1.7737 1.7859 1.7981 1.8103 0.0122 In In In In

10 1.8841 1.8972 1.9103 1.9234 0.0131 In In In In
11 2.8571 2.8842 2.9113 2.9384 0.0271 In In In In
12 3.5992 3.6139 3.6286 3.6433 0.0147 In In In In
13 2.8223 2.8302 2.8381 2.846 0.0079 In In In In
14 2.4533 2.4685 2.4837 2.4989 0.0152 In In In In
15 1.1536 1.2495 1.3454 1.4413 0.0959 In In In In
16 2.7302 2.7374 2.7446 2.7518 0.0072 In In In In
17 −0.0384 −0.0281 −0.0178 −0.0075 0.0103 Out Out Out R-Out
18 1.7459 1.7621 1.7783 1.7945 0.0162 In In In In
19 2.3235 2.3407 2.3579 2.3751 0.0172 In In In In
20 1.4012 1.4154 1.4296 1.4438 0.0142 In In In In
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Table 3. Cont.

Sub. 0.5 0.6 0.7 0.8 4N∗ 0.5 0.6 0.7 0.8

21 1.4273 1.4357 1.4441 1.4525 0.0084 In In In In
22 1.5432 1.5514 1.5596 1.5678 0.0082 In In In In
23 1.8565 1.8677 1.8789 1.8901 0.0112 In In In In
24 2.4935 2.5029 2.5123 2.5217 0.0094 In In In In
25 2.3033 2.3131 2.3229 2.3327 0.0098 In In In In
26 2.2779 2.2844 2.2909 2.2974 0.0065 In In In In
27 1.2704 1.2828 1.2952 1.3076 0.0124 In In In In
28 1.6861 1.6938 1.7015 1.7092 0.0077 In In In In
29 1.8311 1.8428 1.8545 1.8662 0.0117 In In In In
30 1.8256 1.8340 1.8424 1.8508 0.0084 In In In In

Notes: 4N∗ = 4DS4β=0.1
i−j .

6. Conclusions

In several industrial manufacturing industries, the existence of errors in measurement systems
and the human subjectivity in decision-making process makes the collected data imprecise, also called
fuzzy data. Consequently, in the fuzzy environment, traditional Shewhart-type control charts turn out
to be inappropriate because they require crisp data to categorize manufacturing process conditions.

In this paper, the fuzzy u-chart is constructed to monitor the fuzzy average number
of nonconformities per unit. Its fuzzy control limits are first obtained based on the results of the
resolution-identity theorem. Moreover, in order to monitor the process based on the fuzzy control
chart, we first extend a recent developed fuzzy ranking method proposed by Nguyen and Hien [27].
The ranking strategy is based on the quantity of fuzzy numbers’ left-right areas and centroids
to provide more satisfactory reasoning. Then thorough evaluation rules are established to classify
the manufacturing process with four different linguistic states, including In-control, Out-of-control,
Rather out-of control and Rather in-control. Basically, the incorporation of optimism level into the
ranking index provides critical flexibility in decision-making procedure, so decision-makers can exert
their savvy experiences in implementing proper actions to fully control the quality of manufactured
products. In the empirical case study of Vietnam textile dyeing industry, the results show that the
deployment of our proposed fuzzy u-chart can be of great benefit in early detecting the occurrence
of assignable causes.

Finally, as to some extent of anomalous conditions is monitored, this intermediate classification
mechanism can provide critical information to determine whether a further action taken is required
by contemplating the intervention cost as opposed to the quality gain. Thus, this approach can
obviously avoid not only unnecessary adjustment to the current process but also the potential
loss in their business. As such, our proposed fuzzy u-chart can fulfill the current literature
of the conventional u-chart in terms of effectiveness when fuzzy data is inevitably present in the
manufacturing process.
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Abbreviations

The following abbreviations are used in this manuscript:

CLFNs Control-limits’ fuzzy numbers
CL Center line
UCL Upper control limit
LCL Lower control limit
NISD Necessity index of strict dominance
DFA Direct fuzzy approach
FDA Fuzzy dominance approach
LV Left integral values
RV Right integral values
4 DS Unit disparity
R-In Rather in-control
R-Out Rather out-of-control
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