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a b s t r a c t 

Determining a network size for a fuzzy neural network structure is very important, and it is often dif- 

ficult to obtain the most suitable value. This study develops a self-evolving function-link interval type-2 

fuzzy neural network (SEFT2FNN) that autonomously constructs the rule base with the initial empty and 

the membership functions. The function-link is applied to an interval type-2 fuzzy neural network to give 

a more accurate approximation of the function. The adaptive laws for the proposed system are derived 

using the steepest descent gradient approach. The stability of system was guaranteed using Lyapunov 

function approach. Finally, the performance of the proposed system is verified using the numerical sim- 

ulations of the nonlinear system identification and the control of time-varying plants. 
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. Introduction 

In recent years, many studies have combined the fuzzy infer-

nce system and neural networks to produce fuzzy neural net-

orks (FNNs) [1–6] . The fuzzy set theory was first introduced by

adeh in 1965 [7] . It used linguistic variables and membership

unctions to describe the degrees to which elements belong in

uzzy sets. These system are categorized as type-1 fuzzy logic sys-

ems (T1FLS). Since then, flexible features, intuitive knowledge, and

asy computation have meant that the T1FLS has been widely ap-

lied to a variety of fields [8] . Because T1FLS are precise sets, the

rocess cannot deal with the uncertainty that arises from internal

nd external disturbances [9] . Therefore, in 1975 Zadeh developed

he concept of type-2 fuzzy logic systems (T2FLS), which takes ac-

ount of the uncertainty in membership functions [10] . Previous

tudies [11–13] showed that under the same condition, a T2FLS

opes better with the uncertainties than a T1FLS. In order to re-

uce the computational cost, interval type-2 fuzzy logic systems

IT2FLS) were proposed by Liang and Mendel [14] . Since then, the

T2FLS has been the subject of study in various fields, such as con-

rol problems, system identification, prediction and classification

15–24] . In 2009, Castro et al. presented a hybrid learning algo-

ithm for a class of interval type-2 fuzzy neural network [20] . In
∗ Corresponding author. 
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009, Hagras and Wagner proposed the interval type-2 fuzzy logic

ontrollers – towards better uncertainty handling in real world ap-

lications [21] . In 2013, Castillo et al. introduced the universal ap-

roximation of a class of interval type-2 fuzzy neural networks

n nonlinear identification [22] . In 2014, Castillo et al. provided

he application of interval type-2 fuzzy neural networks in nonlin-

ar identification and time series prediction [23] . Following that,

n 2015, Gaxiola et al. presented the optimization of type-2 fuzzy

eights in backpropagation learning for neural networks using GAs

nd PSO [24] . However, because of the fixed structure, it is diffi-

ult to determine suitable fuzzy rules of the system. Many stud-

es have proposed a self-organizing algorithm that autonomously

etermines the network size for a fuzzy neural network [25–28] .

n 2008, Juang and Tsao proposed a self-organizing type-2 neu-

al fuzzy system and applied for the non-linear system identifica-

ion and a truck braking control problem [25] . In 2009, Lin and

hen proposed a self-organizing cerebellar model articulation con-

roller for multi-output multi-input uncertainty nonlinear systems

27] . In 2017, Lin and Le proposed the PSO-self-organizing inter-

al type-2 fuzzy neural network for antilock braking systems [28] .

owever, the disadvantage is that the initial design of the net-

ork significantly affects the control performance, and it requires

nowledge about the system to design the initial rules and mem-

ership functions [29,30] . A self-evolving algorithm was proposed

hat autonomously constructs the IT2FNN using the empty rule and

embership functions. In 2014, Lin et al. presented a self-evolving

ompensatory interval type-2 fuzzy neural network for systems
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identification and prediction problem [31] . In 2016, Moham-

madzadeh et al. proposed a new self-evolving non-singleton type-

2 fuzzy neural network to control fractional-order chaotic systems

[32] . However, compared with function-link IT2FNN, this structure

does not have a sufficient number of adjustable free variables and

its performance could be improved. 

A functional-link network (FLN) was developed by Pao in 1989,

which can enrich the input information by function expansion [33] .

It has been successfully applied in many fields, such as prediction,

classification, system identification, pattern recognition and control

problems [34–39] . Many studies have used the FLN to improve the

performance of control systems. The input representation is en-

hanced using trigonometric functions that are expanded in an ex-

tended space [34] . The output from the FLN is generated by a non-

linear combination of the input variables, so approximation of the

nonlinear function is more accurate [39] . 

The main motivation of this study is to construct a neural net-

work controller which does not need to design the initial structure

of network in advance, and the on-line learning will self-construct

the network to the suitable structure. In this study, a self-evolving

algorithm and a FLN are applied to an IT2FNN to enhance the

performance of the network. This proposed network structure is

referred to as a self-evolving function-link IT2FNN (SEFT2FNN).

The main contributions of this study are the development of a

SEFT2FNN that incorporates adaptive laws for updating parame-

ters and the design of a self-evolving algorithm that autonomously

constructs a network from an empty structure and the empty rule.

The convergency of the proposed algorithm is proven by Lyapunov

function analysis approach. The design of the function-link net-

work for IT2FNN helps the updating parameter have more ad-

justable free variables, which improves the accuracy of the sys-

tem. Comparison with the previous type-2 fuzzy neural networks

in [20–24] , the proposed SEFT2FNN has some advantages such as

it does not request to set the initial structure in advance, the FLN

gives more freedom for adjusting the parameters of IT2FNN, and

more simple computation. Finally, the numerical simulations of

system identifications and the control of time-varying plants are

conducted to show the advantages of the proposed method than

other methods. 

The remainder of the paper is organized as follows.

Section 2 presents the structure of the function-link IT2FNN.

Section 3 details the self-evolving algorithm and parameter

learning for the SEFT2FNN. Section 4 shows the simulation

results for non-linear system identifications and the control

of time-varying plants. Finally, the conclusions are discussed

in Section 5 . 

2. Function-link IT2FNN control system 

Fig. 1 shows the structure of the proposed SEFT2FNN network

system with a self-generated structure. The structure of function-

link is shown in Section 2.1 . The detail steps for constructing the

function-link interval type-2 fuzzy neural network is provided in

Section 2.2 . The parameters are adjusted using the adaptive laws

that are designed in Section 3 . 

2.1. Function-link network 

In many studies of fuzzy inference systems, the weights that

are used in the consequent part of fuzzy rules are often given by

singleton values and are updated using adaptive laws. In this study,

the fuzzy weights are determined using the FLN and updating

indirectly uses the update laws for the weights of the FLN, so there

are more design parameters, which allows a better approximation.

Fig. 2 shows the structure of the FLN. This study uses a trigono-

metric function to expand the function expansion because it is
ore compact and the orthogonal basis functions (sine and cosine)

an be computed more quickly [36] . In the FLN model, an input

ector, I = [ i 1 , i 2 , . . . , i n ] 
T , is enhanced as φ = [ φ1 , φ2 , . . . , φm 

] T ,

here I and φ are the input and output vector of function

xpansion block, respectively. m is the number of elements in

he function expansion output and n is the number of ele-

ents in vector input. For instance, if I = [ i 1 , i 1 , i 3 ] 
T then φ =

 i 1 , sin ( π i 1 ) , cos ( π i 1 ) , i 2 , sin ( π i 2 ) , cos ( π i 2 ) , i 3 , sin ( π i 3 ) , cos ( π i 3 ) , 

 1 i 2 , i 1 i 3 , i 2 i 3 , i 1 i 2 i 3 ] 
T . The j th output of FLN can be expressed as 

 j = q 1 j φ1 + q 2 j φ2 . . . + q m j φm 

= 

m ∑ 

i =1 

q i j φi = q 

T 
j φ (1)

here q j = [ q 1 j , q 2 j . . . , q m j ] 
T , φ = [ φ1 , φ1 . . . , φm 

] T , and q ij are the

eights for the FLN that connect w j and φi . Initially, q ij has an

nitial value and this is updated using the adaptive law that is pre-

ented in the following sections. 

.2. The function-link interval type-2 fuzzy neural network 

In the IT2FNN, the relationship between the consequent and the

ntecedent is explained using an IF-THEN rule. The j th rule has the

ollowing form: 

IF x 1 is ˜ X 1 j and . . . and x i is ˜ X i j and . . . and x n is ˜ X n j 

HEN o j = 

˜ W j (2)

here ˜ X i j is the type-2 fuzzy membership function for the j th rule

f the i th input ( j = 1 , . . . , M and i = 1 , . . . , n ) and 

˜ W j is the

ype-2 fuzzy membership function for the j th output. All param-

ters in the consequent and antecedent parts are updated using

he adaptive laws that are detailed in Section 3.2 . 

The structure of the interval type-2 fuzzy neural network is

hown in Fig. 1 , It has six layers: an input layer, a membership

unction layer, a firing layer, a weight memory layer, a pre-output

ayer and a final output layer. They are described below. 

1) The input layer: there is no computation in this layer. All of

the input variables from this layer are directly transferred to

the next layer. 

2) The membership function layer: In this layer, the member-

ship grades are determined using the input variables, x j , and

a type-2 fuzzy membership input function, ˜ X i j . In this study,

˜ X i j is defined as a type-2 Gaussian membership function

(T2GMF) that has one mean and an uncertain standard de-

viation, σ ∈ [ σ 1 , σ 2 ] (see Fig. 3 ). Using the T2GMF, the mem-

bership grades, μ ˜ X i j 
, are described by the upper and lower

membership functions (UMF and LMF) 

μ̄i j = exp 

{ 

−1 

2 

(
x i − m i j 

σ̄i j 

)2 
} 

(3)

μ
i j 

= exp 

{ 

−1 

2 

(
x i − m i j 

σ i j 

)2 
} 

(4)

3) The firing layer: In this layer, each node is produced using

a t-norm operator. The firing strength of the i th rule is an

interval value F i = [ f 
i 
, f̄ i ] , where f 

i 
and f̄ i are given by: 

f̄ i = 

n ∏ 

j=1 

μ̄i j (5)

f 
i = 

n ∏ 

μ
i j 

(6)
j=1 
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Fig. 1. Structure of the SEFT2FNN. 

Fig. 2. Structure of the function-link network. 

Fig. 3. Interval type-2 Gaussian membership function. 
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4) The output weight layer: Each node in this layer is the

weight of IT2FNN and is determined by the output of the

FLN. From Fig. 3 and (1) , the output weight, w , is derived

as: 

w = 

⎡ ⎣ 

w 1 

. . . 

⎤ ⎦ = 

⎡ ⎣ 

q 11 . . . q m 1 

. . . 
. . . 

. . . 

⎤ ⎦ 

⎡ ⎣ 

φ1 

. . . 

⎤ ⎦ = Q 

T φ (7) 
w k q 1 k . . . q mk φm 

s

The consequent part of the function-link IT2FNN uses a type-2

uzzy set to determine the upper bound and the lower bound of Q

s Q̄ and Q , respectively. The interval value for the vector output

eight [ ̄w , w ] is then derived. For the i th rule, the output weight

s an interval value, w 

i = [ w 

i , w̄ 

i ] . 

5) The pre-output layer: This layer calculates the left and right

output limits by combining the output of layer 3, firing

strength [ f 
i 
, f̄ i ] , and layer 4, output weight [ w 

i , w̄ 

i ] . The

Karnik–Mendel (KM) algorithm is also used to adjust the

contribution of the upper and lower values in the firing

strength [40] . Therefore, the output [ y l , y r ] is given by: 

y l = 

∑ M 

i =1 f 
i 
l 
w 

i ∑ M 

i =1 f 
i 
l 

(8) 

y r = 

∑ M 

i =1 f 
i 
r w̄ 

i ∑ M 

i =1 f 
i 
r 

(9) 

here the firing strengths, f i 
l 

and f i r , are chosen as 

f i l = 

{
f̄ i , i ≤ L 

f 
i 
, i > L 

(10) 

f i r = 

{ 

f 
i 
, i ≤ R 

f̄ i , i > R 

(11) 

here L and R respectively represent the left and right switch

oints, which are determined using the KM algorithm. The detail

f KM algorithm is shown in Appendices A and B . 

6) Output layer: This layer is the final output of the function-

link IT2FNN (FT2FNN). The output of the previous layer is an

interval set [ y l , y r ]. The average operation is used for defuzzi-

fication: 

y = 

y l + y r 

2 

(12) 

The FT2FNN requires suitable rules, which significantly affect

he estimation accuracy of the network. A large number of rules

esult in a very high computational burden, which is unsuitable for

eal-time applications. A small number of rules may be inadequate

o achieve the desired performance. To overcome this problem, this

tudy uses a self-evolving algorithm to autonomously construct

he structure of the FT2FNN, which is presented in the following

ections. 
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3. Self-evolving algorithm and parameter learning 

3.1. Self-evolving for function-link interval type-2 fuzzy neural 

network 

In self-evolving algorithm, the architecture of the FT2FNN is au-

tomatically generated from an empty structure. In the initial run,

the self-evolving algorithm uses the input information to generate

the first Gaussian function (GF) for the input membership function

and for the weight for the defuzzification operation. When the in-

put changes, the algorithm then determines whether to generate

new rules or to delete inappropriate rules or when to update the

existing rules (the GFs and the weights). 

New rules are generated by comparing the prior threshold and

the maximum contribution of GFs to the rule, which is represented

by the membership grade. The condition for generating a new rule

is: If ( G I < T g ), the new input data is far from the existing member-

ship function, so new rule is generated. T g is the prior threshold

for generating rule and G I is the maximum membership grade of

the I th input, which is given by 

G I = max [ μI1 , μI2 , . . . , μIk ] (13)

where the interval membership grade is given by: 

μI j = 

1 

2 

(
μ̄I j + μ

I j 

)
(14)

The initial values for the mean and the variance of the new rule

are defined as: 

m 

M ( k ) +1 

i j 
= i i ( k ) (15)[ 

σ̄ M ( k ) +1 

i j 
, σ M ( k ) +1 

i j 

] 
= [ σinit + �σ, σinit − �σ ] (16)

The vector q M(k )+1 
new 

= [ ̄q M(k )+1 
new 

, q M(k )+1 
new 

] is the weight of FLN and

is defined as 

q 

M ( k ) +1 
new 

= [ q init , q init , . . . , q init ] 
T ∈ � 

m (17)

where M(k) is the total number of rules at the k th step, �σ is half

of the uncertain variance, σ init and q init are the initial values for

the variance and the function-link weight, respectively, m is the

number of elements in the function expansion output. 

The values for �σ and σ init significantly affect the network sys-

tem. Fig. 3 shows if the values of �σ is extremely small, the un-

certainty in the GFs is very small and it becomes a type-1 fuzzy

set. If the values of �σ or σ init are extremely large, the GFs cover

all input domains and a smaller number of rules is generated [25] .

For extremely small values of σ init , the degree of over-lapping be-

tween GFs is small, so a very large number of rules is generated. 

The process of deleting existing rules also takes account of

the contribution of GFs, which is determined using the minimum

membership grades, D I , and is given by: 

D I = arg min [ μI1 , μI2 , . . . , μIk ] (18)

If ( D I < T d ) the minimum membership grade, D I , of the I th input

is smaller than the prior threshold, T d , for the deletion of a rule, so

the I th rule is deleted. 

Using this automatic generation and pruning method, the

proposed SEFT2FNN can determines the optimum number of

rules. Fig. 4 shows the flowchart of the structure and pa-

rameter learning for the proposed method. The online learn-

ing for updating parameters is presented in the following

sections. 

3.2. The SEFT2FNN parameter learning algorithm 

For system identification, the input data is used to train

the network and the final output from the SEFT2FNN is also
he output of the system. An estimation system identification,

ˆ  SEFT 2 FNN ( ̂  q , ̂  q̄ , ˆ m i j , ˆ σ i j , 
̂ σ̄ i j ) , allows an online estimate of the de-

ired output, y d . 

The tracking error vector for the system is defined

s e (k ) = [ e (k ) , ˙ e (k ) , . . . , e ( n −1 ) (k ) ] T ∈ � 

n where e ( k ) is

efined as 

 ( k ) = y d ( k ) − ˆ y SEF T 2 F NN ( k ) ∈ � (19)

here y d ( k ) is the desired output for the system and ˆ y SEF T 2 F NN (k )

s the output of the SEIT2FNN. 

To ensure accurate identification, this study uses a high-order

liding mode from [41–43] 

 ( k ) = 

l−1 ∑ 

l=0 

( n − 1 ) ! 

l! ( n − l − 1 ) ! 

(
∂ 

∂k 

)n −l−1 

λl e 

= e ( n −1 ) + ( n − 1 ) λe ( n −2 ) + ( n − 2 ) λ2 e ( n −3 ) . . . + λn −1 e (20)

here λ is a positive constant, that defines the slope of the sliding

urface. 

Taking the derivative of (20) 

˙ 
 ( k ) = e ( n ) + ( n − 1 ) λe ( n −1 ) + ( n − 2 ) λ2 e ( n −2 ) . . . + λn −1 e ( 1 ) 

= e ( n ) + K 

T e (21)

here K = [ ( n − 1 ) λ, ( n − 2 ) λ2 , . . . . λn −1 ] T ∈ � 

n −1 is the positive

ain vector. 

If the values for n and λ are selected to correspond to the

oefficients of a Hurwitz polynomial, then lim 

k →∞ 

e (k ) = 0 . The Lya-

unov cost function is chosen as V 1 ( s ( k ) ) = 

1 
2 s 

2 (k ) , so ˙ V 1 ( s (k ) ) =
 (k ) ̇ s (k ) . Using (19) and (21) , yield 

˙ 
 1 ( s ( k ) ) = s ( k ) [ y n d − ˆ y n SEF T 2 F NN + K 

T e (22)

An online learning gradient descent algorithm is applied to

inimize ˙ V 1 ( s ( k ) ) . Therefore, the online tuning laws for the pa-

ameters of a type-2 fuzzy system are given by the following equa-

ions: 

 

 

i 
( k + 1 ) = ̂

 q 

i 
( k ) − ˆ ηq 

∂s ( k ) ̇ s ( k ) 

∂ ̂  q 

i 
(23)

 ¯ 
i 
( k + 1 ) = ̂

 q̄ 

i 
( k ) − ˆ ηq 

∂s ( k ) ̇ s ( k ) 

∂ ̂  q̄ 

i 
(24)

ˆ 
 i j ( k + 1 ) = 

ˆ m 

i 
j ( k ) − ˆ ηm 

∂s ( k ) ̇ s ( k ) 

∂ ˆ m i j 

(25)

̂ ¯ i j ( k + 1 ) = ̂

 σ̄ i j ( k ) − ˆ ησ
∂s ( k ) ̇ s ( k ) 

∂ ̂  σ̄ i j 

(26)

ˆ i j ( k + 1 ) = ˆ σ i j ( k ) − ˆ ησ
∂s ( k ) ̇ s ( k ) 

∂ ̂  σ i j 

(27)

here ˆ ηq, ˆ ηm 

, ˆ ησ are the learning-rates for updating the function-

ink weights, the means and the variances, respectively. Applying

he chain rule for the derivation term in (23) –(27) , gives: 

∂s ( k ) ̇ s ( k ) 

∂ ̂  q 

i 
= 

∂s ( k ) ̇ s ( k ) 

∂ ̂  y SEF T 2 F NN 

∂ ̂  y SEF T 2 F NN 

∂ y l 

∂ y l 

∂ ̂  w 

i 

∂ ̂  w 

i 

∂ ̂  q 

i 
= −1 

2 

s ( k ) 
f i 
l ∑ M 

i =1 f 
i 
l 

φ

(28)

∂s ( k ) ̇ s ( k ) 

∂ ̂  q̄ 

i 
= 

∂s ( k ) ̇ s ( k ) 

∂ ̂  y SEF T 2 F NN 

∂ ̂  y SEF T 2 F NN 

∂ y r 

∂ y r 

∂ ̂  w̄ 

i 

∂ ̂  w̄ 

i 

∂ ̂  q̄ 

i 
= −1 

2 

s ( k ) 
f i r ∑ M 

i =1 f 
i 
r 

φ

(29)
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Fig. 4. Flowchart of the structure and parameter learning for the SEFT2FNN. 

 

 

t  

d  

L

∂s ( k ) ̇ s ( k ) 

∂ ˆ m i j 

= 

1 

2 

∂s ( k ) ̇ s ( k ) 

∂ ̂  y SEF T 2 F NN 

(
∂ y l 
∂ f i 

l 

∂ f i 
l 

∂ ˆ m i j 

+ 

∂ y r 

∂ f i r 

∂ f i r 
∂ ˆ m i j 

)
= −1 

2 

s ( k ) 

( (
w 

i − y l 
)

∑ M 

i =1 f 
i 
l 

∂ f i 
l 

∂ ˆ m i j 

+ 

(
w̄ 

i − y r 
)

∑ M 

i =1 f 
i 
r 

∂ f i r 
∂ ˆ m i j 

) 

(30) 

∂s ( k ) ̇ s ( k ) 

∂ ̂  σ̄ i j 

= 

1 

2 

∂s ( k ) ̇ s ( k ) 

∂ ̂  y SEF T 2 F NN 

(
∂ y l 
∂ f i 

l 

∂ f i 
l 

∂ ̂  σ̄ i j 

+ 

∂ y r 

∂ f i r 

∂ f i r 

∂ ̂  σ̄ i j 

)
= −1 

2 

s ( k ) 

( (
w 

i − y l 
)

∑ M 

i =1 f 
i 
l 

∂ f i 
l 

∂ ̂  σ̄ i j 

+ 

(
w̄ 

i − y r 
)

∑ M 

i =1 f 
i 
r 

∂ f i r 

∂ ̂  σ̄ i j 

) 

(31) 

∂s ( k ) ̇ s ( k ) 

∂ ̂  σ i j 

= 

1 

2 

∂s ( k ) ̇ s ( k ) 

∂ ̂  y SEF T 2 F NN 

(
∂ y l 
∂ f i 

l 

∂ f i 
l 

∂ ̂  σ i j 

+ 

∂ y r 

∂ f i r 

∂ f i r 
∂ ̂  σ i j 

)
= −1 

2 

s ( k ) 

( (
w 

i − y l 
)

∑ M 

i =1 f 
i 
l 

∂ f i 
l 

∂ ̂  σ i j 

+ 

(
w̄ 

i − y r 
)

∑ M 

i =1 f 
i 
r 

∂ f i r 
∂ ̂  σ i j 

) 

(32) 

From (10) and (11) , the elements f i 
l 

and f i r in (28) –(32) can be

f 
i 

or f̄ i 

∂ f i 

∂ ˆ m i j 

= 

∂ f i 

∂ μi 
j 

∂ μi 
j 

∂ ˆ m i j 

= f 
i x j − ˆ m i j (

ˆ σ i j 

)2 
(33) 
∂ f̄ i 

∂ ˆ m i j 

= 

∂ f̄ i 

∂ μ̄i 
j 

∂ μ̄i 
j 

∂ ˆ m i j 

= f̄ i 
x j − ˆ m i j (

σ̄i j 

)2 
(34) 

∂ f i 

∂ σ̄i j 

= 

∂ f i 

∂ μi 
j 

∂ μi 
j 

∂ σ̄i j 

= f 
i 

(
x j − ˆ m i j 

)2 (
σ̄i j 

)3 
(35) 

∂ f̄ i 

∂ σ̄i j 

= 

∂ f̄ i 

∂ μ̄i 
j 

∂ μ̄i 
j 

∂ σ̄i j 

= f̄ i 

(
x j − ˆ m i j 

)2 (
σ̄i j 

)3 
(36) 

∂ f i 

∂ ̂  σ i j 

= 

∂ f i 

∂ μi 
j 

∂ μi 
j 

∂ ̂  σ i j 

= f 
i 

(
x j − ˆ m i j 

)2 (
ˆ σ i j 

)3 
(37) 

∂ f̄ i 

∂ ̂  σ i j 

= 

∂ f̄ i 

∂ μ̄i 
j 

∂ μ̄i 
j 

∂ ̂  σ i j 

= f̄ i 

(
x j − ˆ m i j 

)2 (
ˆ σ i j 

)3 
(38) 

Using the online tuning parameter that is detailed in (23) –(27) ,

he SEFT2FNN identifier is obtained and the system can achieve the

esired performance. The stability of system is guaranteed using

yapunov function approach, and it is proven in Appendix C . 
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Fig. 5. Identification scheme. 

Fig. 6. The result of identification non-BIBO plant after 200 epochs training. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The RMSE during 200 training epochs. 

Fig. 8. The number of input MFs during 200 training epochs. 

Fig. 9. The result during 1 training epoch. 

q  

F  

t  

fi  

r  

t  

o  
4. Simulation studies 

4.1. System identification problems 

The scheme for system identification is shown in Fig. 5 . The

term, z −n , is the step delayed value for signals. For example, the

signal y ( k − n ) represents a signal y ( k ) that is delayed n steps. The

input for the system identifier SEFT2FNN is the nonlinear plant in-

puts, u ( k ), u ( k − 1 ) , . . . , u ( k − n ) , and the delay in the nonlinear

plant output is y d ( k − 1 ) , y d ( k − 2 ) , . . . , y d ( k − n ) . System identi-

fication requires that the errors between the nonlinear plant out-

put y d ( k ) and the output of ˆ y SEF T 2 F NN converge to zero for all input

values of u ( k ). This study uses three inputs, u (k ) , y d ( k − 1 ) and

y d ( k − 2 ) , to train the SEFT2FNN for all simulations. All the train-

ing data are the same as those used in [16,44] . To limit the cost

of computation, the maximum number of T2GMF in each input is

limited to 7 MFs. 

Example 1: Identification of a non-BIBO nonlinear plant 

The non-bounded-input bounded-output nonlinear plant (non-

BIBO) used in [43] and [44] is described as 

y ( k + 1 ) = 0 . 2 y 2 ( k ) + 0 . 2 y ( k − 1 ) + 0 . 4 sin ( 0 . 5 ( y ( k ) 

+ y ( k − 1 ) ) ) cos ( 0 . 5 ( y ( k ) + y ( k − 1 ) ) ) + 1 . 2 u ( k ) (39)

where u ( k ) is the input signal, which is u (k ) = 0 . 5 e −0 . 1 k T 0 sin ( 5 k T 0 ) ,

and T 0 = 0 . 001 is the sampling time. 

The SET2FNN is trained for 200 epochs using 500 samples.

Fig. 6 a shows the output for a non-BIBO system, y d ( k ), and the

output for the identifier, ˆ y SEFT 2 FNN (k ) . Fig. 6 b shows the tracking

error between y d ( k ) and ˆ y SEFT 2 FNN (k ) during the online identifi-

cation. Fig. 7 shows the evolution of the root mean square error

(RMSE) during 200 epochs of training. Fig. 8 shows the change in

the number of input membership functions during 200 epochs (to-

tal sample is 50 0 ∗20 0). The change in the number membership

functions is not shown clearly because the algorithm converges
uickly to a suitable structure after training for a few epochs.

ig. 9 shows the result during training one epoch. It shows that

he changes in the input membership functions only occur for the

rst 50 samples. When the error converges to zero, the number of

ules quickly converges to an optimum number. Table 1 compares

he RMSE values and computation times for the IT2FNN, a self-

rganizing IT2FNN (SOT2FNN), a self-evolving IT2FNN (SET2FNN)
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Table 1. 

Comparison results in RMSE of non-BIBO plant. 

Computation time (s) RMSE 

IT2FNN 0.410 0.0092 

SOT2FNN [28] 0.458 0.0083 

SET2FNN 0.472 0.0076 

SEFT2FNN 0.507 0.0065 

Fig. 10. Identification BIBO nonlinear plant. 

Fig. 11. The RMSE during 200 training epochs. 

a  

c  

t  

t

 

(  

e

y

w

 

i  

l  

s  

t  

e  

b  

i  

t  

Fig. 12. The number of input MFs during 200 training epochs. 

Table 2. 

Comparison results in RMSE of BIBO plant. 

Computation time (s) RMSE 

T2 TSK FNS [16] None 0.032 

T2FNN 0.142 0.038 

SOT2FNN [28] 0.149 0.035 

SET2FNN 0.155 0.029 

SEFT2FNN 0.171 0.026 
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i  

f  
nd Self-evolving function-link IT2NN (the proposed method). This

omparison shows that the proposed SEFT2FNN performs better, in

erms of identification than the other methods. However, compu-

ation time is greater. 

Example 2: Identification of a BIBO nonlinear plant 

In this example, the nonlinear bounded-input bounded-output

BIBO) nonlinear plant that was used in [15] and [16] is used to

valuate the performance of the SEFT2FNN identifier 

 ( k ) = u ( k ) 
3 + 

y ( k − 1 ) 

1 + y ( k − 1 ) 
2 

(40) 

here the input signal is given as u (k ) = sin ( 2 πk 
100 ) . 

After training for 200 epochs, using 200 samples, the SET2FNN

dentifies the plant with a small error. Theoutput for the BIBO non-

inear plant, y d ( k ), and the output of the identifier, ˆ y SEFT 2 FNN (k ) , are

hown in Fig. 10 a. The tracking error during the online identifica-

ion is shown in Fig. 10 b. The evolution of the RMSE value over 200

pochs is shown in Fig. 11 . Fig. 12 shows the change in the num-

er of input membership functions over 200 epochs (total sample

s 20 0 ∗20 0). Table 2 compares the RMSE values and the computa-

ion times for the proposed method and the other methods. The
esult of this comparison results are similar to those for the previ-

us example. 

Example 3: Identification of a second-order nonlinear time-varying

lant 

The second-order nonlinear time-varying plant that is used in

his simulation is described in [44] and [16] by the dynamic equa-

ion: 

 ( k ) = 

x 1 x 2 + x 3 
x 4 

(41) 

here x 1 = y ( k − 1 ) y ( k − 2 ) y ( k − 3 ) u ( k − 1 ) , x 2 = y ( k − 3 ) − b(k ) ,

 3 = c(k ) u (k ) , and x 4 = a (k ) + y ( k − 2 ) 2 + y ( k − 3 ) 2 , in which a ( k ),

 ( k ) and c ( k ) are time-varying parameters that are given by: 

 ( k ) = 1 . 2 − 0 . 2 cos (2 πk T 0 ) 

 ( k ) = 1 − 0 . 4 sin (2 πk T 0 ) 

c ( k ) = 1 + 0 . 4 sin ( 2 πk T 0 ) (42) 

nd u ( k ) is the input signal, which is given as: 

 ( k ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

sin 

(
πk 
25 

)
k < 250 

1 . 0 250 ≤ k < 50
−1 . 0 500 ≤ k < 75

0 . 3 sin 

(
πk 
25 

)
+ 0 . 1 sin 

(
πk 
32 

)
+ 0 . 6 sin 

(
πk 
10 

)
750 ≤ k < 10 0

(43) 

The SET2FNN system identification is trained for 100 epochs us-

ng 10 0 0 samples. Fig. 13 a shows the output for the second-order

onlinear time-varying plant, y d ( k ), and the output of the identi-

er, ˆ y SEFT 2 FNN (k ) . Fig. 13 b shows the tracking error for the system

uring the online identification. Fig. 14 shows the evolution of the

MSE value over 100 epochs. Fig. 15 shows the change in the num-

er of input membership functions over 100 epochs (total sample

s 10 0 0 ∗10 0). The RMSE values and the computation times for the

roposed method and the other methods are compared in Table 3 .

From Figs. 7, 11, 14 and the comparison results for the RMSE

n Tables 1–3 , it is clear that the proposed method gives a

aster and better result for the identification problem. The RMSE
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Fig. 13. Identification second-order nonlinear time-varying plant. 

Fig. 14. The RMSE during 100 training epochs. 

Fig. 15. The number of input MFs during 100 training epochs. 

Table 3. 

Comparison results in RMSE of second-order nonlinear time- 

varying plant. 

Computation time (s) RMSE 

SMC-based learning [44] 0.853 0.028 

T2FNN 0.874 0.037 

SOT2FNN [28] 0.972 0.034 

SET2FNN 0.981 0.031 

SEFT2FNN 1.040 0.023 

Fig. 16. The control system scheme for dynamic time-varying plant. 
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alues converge faster during training epochs than the other meth-

ds. Because the processing time of the self-evolving algorithm and

he function-link network, the computation time of the proposed

ethod is a little longer, but it is acceptable. Compared with the

roposed method, at the beginning of the processing, the RMSE

f SOT2FNN has been decreased more regularly. However, when

he SEFT2FNN converges to the suitable structure, it can obtain the

maller value in RMSE. 

.2. Control problems (Dynamic time-varying plants) 

The scheme for the control system is shown in Fig. 16 . The in-

ut for the SEFT2FNN control system is the output of the sliding

yperplane and its derivative, s ( t ) and ˙ s (t) . The goal of control sys-

em is generates the control signal ˆ u SEF T 2 F NN (t) , which can force

he output of the dynamic time-varying plant y ( t ) to track the ref-

rence signal y d ( t ). The same with examples in identification prob-

em, the maximum number of T2GMF in each input is limited to 7

Fs. 

Example 4: Control the dynamic time-varying plant borrowed from

45] 

 ( t ) = 

y ( t − 1 ) y ( t − 2 ) ( y ( t − 1 ) + 2 . 5 ) (
1 + y ( t − 1 ) 

2 + y ( t − 2 ) 
2 
) + u ( t ) (44)

here y(t) and u(t) are output of the plant and control signal, re-

pectively. y(t −1 ) and y(t −2 ) denote the one-step and two-step de-

ayed of y(t) . The reference signal y d ( t ) is given by the stepwise

hanges as: 

 d (t) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

10 , 0 < k ≤ 50 

15 , 50 < k ≤ 100 

10 , 100 < k ≤ 150 

15 , 150 < k ≤ 200 

(45)

Fig. 17 shows the control result of the time-varying plant in Ex-

mple 4. Fig. 17 a includes the reference signal and the output of

ontrol system, Fig. 17 b show control signal, and Fig. 17 c is the

racking error of control system. It is obvious that the SEFT2FNN

an quickly generate the rules and control the time-varying plant

ery well. The RMSE of the control system over 200 s is 0.1359.

fter about 0.05 s, the number of MFs are converged to 3 MFs for

nput 1, and 2 MFs for input 2. The change of MFs for input 1 and

nput 2 during 200 s is shown in Fig. 18 . 

xample 5. Control the dynamic time-varying plant borrowed from

46] 

 ( t ) = b 0 ( t ) u ( t ) (46)

here 

 0 ( t ) = − t 2 

1 + a 1 ( t ) t + a 2 ( t ) t 2 
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Fig. 17. Control the time-varying plant in Example 4. (a) The reference signal and 

the output of control system. (b) The control signal. (c) The tracking error of control 

system. 

Fig. 18. The number of MFs during 200 s in Example 4. (a) The number of MFs for 

input 1. (b) The number of MFs for input 2. 
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Fig. 19. The change of time-varying parameter a1 and a2 during 100 s in Example 

5 . 

Fig. 20. Control the time-varying plant in Example 5 . (a) The reference signal and 

the output of control system. (b) The control signal. (c) The tracking error of control 

system. 

Fig. 21. The number of MFs during 100 s in Example 5 . (a) The number of MFs for 

input 1. (b) The number of MFs for input 2. 
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 1 ( t ) = 

2 + a 1 ( t ) t 

1 + a 1 ( t ) t + a 2 ( t ) t 2 

 2 ( t ) = − 1 

1 + a 1 ( t ) t + a 2 ( t ) t 2 

Here, a 1 ( t ) and a 2 ( t ) are the time-varying plant parameter given

y 

 1 ( t ) = 

0 . 1 t 

t + 1 

a 2 (t) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

0 . 3 , 0 ≤ k < 40 

0 . 1 , 40 ≤ k < 60 

0 . 6 , 60 ≤ k < 85 

0 . 3 , k > 85 

(47) 

The reference signal is given by 

 d (t) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

10 , 0 < k ≤ 25 

15 , 25 < k ≤ 50 

10 , 50 < k ≤ 75 

15 , 75 < k ≤ 100 

(48) 

The change of time-varying parameter a1 and a2 during 100 s

n Example 5 are shown in Fig. 19 . The reference signal and the

utput of control system are shown in Fig. 20 a, and the control sig-

al and the tracking error of control system are shown in Fig. 20 b
nd Fig. 20 c, respectively. Fig. 21 shows the change of number MFs

uring 100 s. From the simulation results, it can be observed that

he SEFT2FNN controller can control the time-varying plant fol-

ow the reference signal very well. The structure of the proposes

ontroller can quickly converge to the suitable structure by self-

volving algorithm. In this example, the number MFs of input 1

nd input 2 are converged to 2 MFs. The RMSE in this example is

.7255. The comparison RMSE of the proposed method with the

ther methods are shown in Table 4 . 

In all examples, the structure of the SEFT2FNN does not need

o design in advance, because it can self-evolving to the suitable

etwork structure. The parameter in the sliding hyperplane is cho-

en as n = 3 and λ = 0 . 05 . The initial parameter for the consequent

nd the antecedent in IT2FNN also does not need to be designed

n advance, and the rules can be auto generated using the input

ignal and all parameters can be updated based on the adaptive
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Table 4. 

Comparison results in RMSE of control time-varying 

plant. 

Example 4 Example 5 

Type-2 TSK FNS [16] 0.1469 0.7395 

T2FNN 0.2471 0.8439 

SOT2FNN [28] 0.1427 0.7825 

SET2FNN 0.1583 0.7540 

SEFT2FNN 0.1359 0.7255 
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law. The initial parameters for generating the variance are cho-

sen as σinit = 0 . 5 and �σ = 0 . 1 . The learning-rates are chosen as,

ˆ ηm 

= 0 . 01 and ˆ ησ = 0 . 01 . The prior threshold for generating and

deleting rule are chosen as T g = 0 . 1 and T d = 0 . 05 . The sample time

is 0.01 s. 

5. Conclusion 

This paper proposes a SEFT2FNN for system identification and

the control problem. The proposed method is suitable for many

fields, such as control problems, system identification, classifica-

tion, and prediction. The major contributions of this study are (1)

the development of a SEFT2FNN with an adaptive law for updating

parameters, (2) a self-evolving algorithm that allows the network

to automatically achieve optimum construction from empty rules,

so there is no need to design the structure of the SEFT2FNN in ad-

vance, (3) the convergence of the proposed algorithm is proven by

Lyapunov function analysis approach and (4) the function-link net-

work is combined to improve the accuracy with which the nonlin-

ear function is approximated. The numerical simulation results for

an identification problem and the control of time-varying plants

show the superiority of the proposed method over other methods.

Choosing the learning rates for the adaptive laws and the thresh-

olds for generating and deleting the rules significantly affect the

system performance. Therefore, the future studies will apply the

optimal algorithm to optimize the learning rates and the thresh-

olds, so the RMSE can be quickly converged and the performance

of the system can be further improved. 
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Appendix A. [47] 

The detail of KM algorithm for finding the right switch point, R.

Step 1: Sort w̄ 

i ( i = 1 , 2 , . . . , M ) such that w̄ 

1 ≤ w̄ 

2 ≤ · · · ≤ w̄ 

M 

Step 2: Computing f i r and y 

f i r = 

f̄ i + f i 
2 and y = 

∑ M 
i =1 f 

i 
r ̄w 

i ∑ M 
i =1 f 

i 
r 

Step 3: Find the point k ( 1 ≤ k ≤ M − 1 ) where w̄ 

k ≤ y ≤ w̄ 

k +1 

Step 4: Set f i r = 

{
f 

i 
, i ≤ k 

f̄ i , i > k 
and compute y ′ = 

∑ M 
i =1 f 

i 
r ̄w 

i ∑ M 
i =1 f 

i 
r 

Step 5: If y ′ 	 = y Then set y = y ′ and go to Step 3 

If y ′ = y Then set y r = y ; R = k and Stop KM algorithm 

Appendix B. [47] 

The detail of KM algorithm for finding the left switch point, L. 

Step 1: Sort w 

i ( i = 1 , 2 , . . . , M ) such that w 

1 ≤ w 

2 ≤ · · · ≤ w 

M 
Step 2: Computing f i 
l 

and y 

f i 
l 

= 

f̄ i + f i 
2 and y = 

∑ M 
i =1 f 

i 
l 
w 

i ∑ M 
i =1 f 

i 
l 

Step 3: Find the point k ( 1 ≤ k ≤ M − 1 ) where w 

k ≤ y ≤ w 

k +1 

Step 4: Set f i 
l 

= 

{
f̄ i , i ≤ k 

f 
i 
, i > k 

and compute y ′ = 

∑ M 
i =1 f 

i 
l 
w 

i ∑ M 
i =1 f 

i 
l 

Step 5: If y ′ 	 = y Then set y = y ′ and go to Step 3 

If y ′ = y Then set y l = y ; L = k and Stop KM algorithm 

ppendix C 

roof. The Lyapunov function is defined as: 

 ( s ( k ) ) = 

1 

2 

s 2 ( k ) (C1)

˙ 
 ( s ( k ) ) = s ( k ) ̇ s ( k ) (C2)

The change in ( C2 ) can be obtained 

efined P x ( k ) = 

∂ ̂  y SEF T 2 F NN 

∂x 
, for x = ˆ q , ̂  q̄ , ˆ m , ̂  σ, ̂ σ̄ (C3)

here 

 ˆ q ( k ) = 

∂ ̂  y SEF T 2 F NN 

∂ ̂  q 

= 

[ 

∂ ̂  y SEF T 2 F NN 

∂ ̂  q 
11 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  q 
1 n j 

, 
∂ ̂  y SEF T 2 F NN 

∂ ̂  q 
21 

, 

× . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  q 
2 n j 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  q 
n i n j 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  q 
n i n j 

] 

 ˆ q ( k ) = 

∂ ̂  y SEF T 2 F NN 

∂ ̂  q̄ 

= 

[ 

∂ ̂  y SEF T 2 F NN 

∂ ̂  q̄ 11 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  q̄ 1 n j 

, 
∂ ̂  y SEF T 2 F NN 

∂ ̂  q̄ 21 

, 

× . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  q̄ 2 n j 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  q̄ n i n j 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  q̄ n i n j 

] 

 ˆ m 

( k ) = 

∂ ̂  y SEF T 2 F NN 

∂ ˆ m 

= 

[
∂ ̂  y SEF T 2 F NN 

∂ ˆ m 11 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ˆ m 1 n j 

, 
∂ ̂  y SEF T 2 F NN 

∂ ˆ m 21 

, 

× . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ˆ m 2 n j 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ˆ m n i n j 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ˆ m n i n j 

]

 ˆ σ ( k ) = 

∂ ̂  y SEF T 2 F NN 

∂ ̂  σ
= 

[
∂ ̂  y SEF T 2 F NN 

∂ ̂  σ 11 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  σ 1 n j 

, 
∂ ̂  y SEF T 2 F NN 

∂ ̂  σ 21 

, 

× . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  σ 2 n j 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  σ n i n j 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  σ n i n j 

]

 ̂ σ̄ ( k ) = 

∂ ̂  y SEF T 2 F NN 

∂ ̂  σ̄
= 

[
∂ ̂  y SEF T 2 F NN 

∂ ̂  σ̄ 11 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ ̂  σ̄ 1 n j 

, 
∂ ̂  y SEF T 2 F NN 

∂ ̂  σ̄ 21 

, 

× . . . , 
∂ ̂  y SEF T 2 F NN 

∂ σ̄2 n j 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ σ̄n i n j 

, . . . , 
∂ ̂  y SEF T 2 F NN 

∂ σ̄n i n j 

]
Apply the gradient descent method, C(2) can be represented by

˙ 
 ( s ( k + 1 ) ) = 

˙ V ( s ( k ) ) + � ˙ V ( s ( k ) ) ∼= 

˙ V ( s ( k ) ) + 

[
∂ ˙ V ( s ( k ) ) 

∂x 

]T 

�x 

(C4)

here � ˙ V ( s ( k ) ) is the change in 

˙ V ( s ( k ) ) and �x denotes the

hange in x . 



C.-M. Lin et al. / Neurocomputing 275 (2018) 2239–2250 2249 

�

�

 

f  

t

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

 

[  

 

 

 

[  

 

[  

 

[  

[  

 

[  

 

 

 

[  

 

 

 

[  

 

 

[  

 

 

[  

 

[  

 

[  

 

 

[  

[  

 

[  

 

[  

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  

S

Using the chain rule and obtain 

∂ ˙ V ( s ( k ) ) 

∂x 
= 

∂ ˙ V ( s ( k ) ) 

∂ ̂  y SEF T 2 F NN 

∂ ̂  y SEF T 2 F NN 

∂x 
= 

∂s ( k ) ̇ s ( k ) 

∂ ̂  y SEF T 2 F NN 

∂ ̂  y SEF T 2 F NN 

∂x 
(C5) 

Using (27) and ( C4 ) yields 

∂ ˙ V ( s ( k ) ) 

∂x 
= −s ( k ) 

∂ ̂  y SEF T 2 F NN 

∂x 
= −s ( k ) P x ( k ) (C6) 

From (28) –( 32 ), we have 

x = − ˆ ηx 
∂s ( k ) ̇ s ( k ) 

∂x 
= ˆ ηx s ( k ) P x ( k ) (C7) 

Substituting ( C6 ), ( C7 ) into ( C4 ) 

˙ V ( s ( k ) ) = 

[
∂ ˙ V ( s ( k ) ) 

∂x 

]T 

�x = [ −s ( k ) P x ( k ) ] 
T ∗ ˆ ηx s ( k ) P x ( k ) 

= −s 2 ( k ) ̂  ηx P x ( k ) (C8) 

From ( C8 ) if ˆ ηx is chosen as ˆ ηx > 0 then � ˙ V ( s ( k ) ) < 0 . There-

ore, the convergence of the updating algorithm is guaranteed by

he Lyapunov stability theorem. 
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